
A Study on
Distributed k-Mutual Exclusion Algorithms

Hirotsugu Kakugawa

February 1995

Abstract

The mutual exclusion problem is a problem of arbitrating access conflicts for resources. The prob-

lem has been considered as a fundamental problem in computer science and extensively studied from

the first minute operating systems started providing multi-tasking or multi-programming feature. Re-

cently, a large number of computers are connected to a computer network. Such a system is called

a distributed system. In a distributed system, several processes do their jobs by communicating with

other processes on remote computers. When they share resources, processes may request the same

resource at the same time. If the resource requires mutually exclusive access, then some regulation is

needed to access it. This isthe distributed mutual exclusion problem.

Most of previous works for the distributed mutual exclusion problem treat the case in which only one

resource exists in a distributed system. This model may be suitable for modeling, e.g., access control

of a distributed database. However, there are other cases in which more than one identical resources

exist in a distributed system. The problem of arbitrating identicalk resources is calledthe distributed

k-mutual exclusion problem.

Distributed systems consist of many components such as computers and communication links. In

general, the probability that all components are simultaneously in operational is smaller than the prob-

ability that a component is in operational. This implies that when we design a distributed system, we

should expect that some components may fail. Fault tolerance is therefore regarded as one of the most

important issues in designing distributed systems. Unlike parallel computers, distributed systems are

loosely coupled, so that it is easy to add redundant components to increase the availability of distrib-

uted systems in such a way that even if several computers and/or communication links may fail, the

rest of system is still in operational and alive components work correctly.

This dissertation investigates the distributedk-mutual exclusion problems. We discuss two ap-

proaches:the coterie approachand the self-stabilization approach. In Chapter 1, we give a general

introduction to the distributedk-mutual exclusion problem, and address the objectives of this disserta-

tion.

Part I contains the coterie approach. The concept ofcoterie is introduced to reduce the number of

messages a process to enter a critical section and to increase the availability of systems. In Chapter

2, we give an introduction to the coterie-based distributed mutual exclusion and introduce the concept

of k-coterieas an extension of coterie. In Chapter 3, the availability ofk-coterie is investigated. In

Chapter 4, a distributedk-mutual exclusion algorithm usingk-coterie is proposed and its correctness

3

4

is proven. In Chapter 5, to demonstrate the efficiency of the proposed algorithm, computer simulations

of the proposed algorithm are done.

In Part II, the self-stabilization approach is discussed. A self-stabilizing system is a system which

converges to a legitimate (stable) system state without centralized control even if any transient errors

happen. In Chapter 6, we give an introduction to the self-stabilization approach. Formal definitions

of computational models are described. In Chapter 7 we propose several self-stabilizing mutual ex-

clusin algorithms. Forst, we propose a self-stabilizingk-mutual exclusion algorithm for unidirectional

and bidirectional ring networks whose sizes are prime. The proposed algorithm does not require pro-

cess identifiers, i.e., it is a uniform system. Thus, it works for anonymous ring networks. Next, we

investigate the self-stabilizing 1-mutual exclusion problem as a special case of the self-stabilizingk-

mutual exclusion problem. We propose a randomized self-stabilizing 1-mutual exclusion algorithm

for unidirectional ring networks.

In Chapter 8, we summlize the results in this dissertation and discuss future tasks.

Acknowledgments

I wish to thank my advisor Professor Masafumi Yamashita for his advice, suggestions and encour-

agements. He taught me a research field of distributed algorithms and suggested me to study the

distributed mutual exclusion problem.

I am very grateful to Professor Keiichi Yamagata, Professor Toshimasa Watanabe, Professor

Ken’ichi Hagihara, and Associate Professor Shin’ichi Wakabayashi for their invaluable discussions

and comments on this dissertation.

I would like to thank Professor Tadashi Ae, Associate Professor Reiji Aibara, and Research Asso-

ciate Satoshi Fujita for their invaluable comments and discussions. I also thank Research Associate

Mr. Yasuhide Ito for his invaluable support.

I thank Professor Katsushi Inoue at Yamaguchi University, Professor Itsuo Takanami at Iwate Uni-

versity, and Associate Professor Hiroshi Matsuno at Oshima National College of Maritime Technology

for their encouragement. Especially, Professor Inoue introduced me the theoretical computer science

and taught me how to do research.

I would like to thank Associate Professor Masaaki Mizuno and Kyoko Mizuno at Kansas State Uni-

versity and Research Associate Yoko Kamidoi at Hiroshima City University for their encouragement.

A special thank goes to Miss Yayoi Ushio for her encouragement and delicious tea-breaks.

5

Contents

1 Introduction 15

1.1 The Mutual Exclusion Problem . 15

1.2 Distributed Systems . 16

1.3 The Distributed Mutual Exclusion Problem . 16

1.4 The Distributedk-Mutual Exclusion Problem . 17

1.5 Fault Tolerance of Distributed Systems . 18

1.6 Organization of This Dissertation . 18

I The Coterie Approach 21

2 The Coterie Approach for the Distributed k-Mutual Exclusion 23

2.1 Previous Works for the Distributed 1-Mutual Exclusion 23

2.1.1 The first distributed 1-mutual exclusion algorithm by Lamport 23

2.1.2 Majority and voting . 24

2.1.3 Coterie . 25

2.1.4 Study on fault tolerance . 26

2.1.5 Token-based algorithms . 26

2.2 Previous Works for the Distributedk-Mutual Exclusion 27

2.3 Models andk-Coteries . 28

3 Availability of k-Coterie 33

3.1 Assumptions and Definitions . 33

3.2 k-Majority Coteries . 35

3.3 k-Singleton Coteries . 38

3.4 Concluding Remarks . 39

4 A Distributed k-Mutual Exclusion Algorithm using k-Coterie 41

4.1 The Distributedk-Mutual Exclusion Algorithm . 41

4.2 Correctness proofs . 43

4.3 Message complexity . 44

7

8 CONTENTS

4.4 Concluding Remarks . 45

5 Experimental Evaluation of thek-Mutual Exclusion Algorithm 47

5.1 Assumptions and the Simulation Model . 47

5.2 Outline of the Simulation System . 48

5.3 The Distributedk-Mutual Exclusion Algorithm by Kerry Raymond 50

5.4 Simulation and Results . 50

5.5 Concluding Remarks . 57

II The Self-Stabilization Approach 59

6 The Self-Stabilization Approach for the Distributed k-Mutual Exclusion 61

6.1 Computational Models . 61

6.2 Previous Works . 62

6.3 Preliminaries . 64

6.3.1 The process and network model . 64

6.3.2 Scheduling of processes . 65

6.3.3 The self-stabilizingk-mutual exclusion problem 65

7 Self-Stabilizing Mutual Exclusion Algorithms 67

7.1 Self-Stabilizingk-Mutual Exclusion Algorithms . 67

7.1.1 Burns and Pachl’s Algorithm . 67

7.1.2 Unidirectional Uniform Rings . 69

7.1.3 Bidirectional Uniform Rings . 72

7.2 A Self-Stabilizing 1-Mutual Exclusion Algorithm with Randomization 79

7.2.1 The self-stabilizing system under a c-dragon 79

7.2.2 The randomized self-stabilizing system under a c-daemon 80

7.2.3 The randomized self-stabilizing 1-mutual exclusion algorithm 81

7.3 Concluding Remarks . 89

8 Conclusion 91

A Local Coteries and a Distributed Resource Allocation Algorithm 93

A.1 The Resource Model . 93

A.2 The Resource Allocation Problem . 94

A.3 Local Coteries . 95

A.4 A Distributed Resource Allocation Algorithm . 96

A.5 Correctness Proof . 99

A.6 Concluding Remarks . 101

CONTENTS 9

B Implementations of Distributed k-Mutual Exclusion Algorithms 103

B.1 Our Distributedk-Mutual Exclusion Algorithm usingk-Coterie 104

B.2 Raymond’s Distributedk-Mutaul Exclusion Algorithm 108

B.3 The Behavior of a Process . 110

List of Figures

5.1 The behavior of a process . 48

5.2 The simulation system (in the casen = 5) . 49

5.3 The average number of messages (k = 2, n = 5). 52

5.4 The average number of messages (k = 2, n = 8). 53

5.5 The average number of messages (k = 2, n = 11). 54

5.6 The average number of messages (k = 3, n = 7). 55

5.7 The average number of messages (k = 4, n = 9). 56

11

List of Tables

3.1 pu(n, r, k) for somen (k = 1, ..., 6, r = 1, ..., k). 36

3.2 pl(n, r, k) for somen (k = 1, ..., 6, r = 1, ..., k). 39

3.3 (k, r)-availabilities of Majkand Sglk(k = 4, n = 14). 40

4.1 Message complexities of disributedk-mutual exclusion algorithms 46

5.1 Cross over probabilities fork = 2 . 52

13

Chapter 1

Introduction

1.1 The Mutual Exclusion Problem

The mutual exclusion problem first arised when the concept of concurrent processes was introduced

in operating systems. When more than one processes share memory cells, undesirable situations may

happen: Suppose that two processesP1 andP2 which share a variable, sayx, wish to incrementx by

one. To increment the value ofx, a process loads the value ofx into a register in CPU, increments the

value of the register by one, and then stores it back intox. If P2 starts executing the above procedure

afterP1 finishes its execution, the result is correct, i.e., the value ofx is incremented by two. However,

what if their executions are interleaved? Consider, for example, the following interleaved execution

sequence.P1 loadsx, P1 increments the register,P2 loadsx, P2 increments the register,P2 stores the

register intox, and thenP1 stores the register intox. x is incremented by only one !

To guarantee such an undesirable situation does not happen, the concept ofcritical sectionis in-

troduced. A program text can be partitioned into two kinds of sections: sections in which there are

no accesses to shared resources (e.g., shared variables) and sections in which shared resources are ac-

cessed. The latter sections are calledcritical sectionsor critical regions. Then it is easy to see that by

synchronizing processes in such a way that at most one of them is in a critical section, we can achieve

one aim of avoiding undesirable situations. For instance, by encapsulating the three steps of increment

procedure, (1) loadingx into a register, (2) incrementing the value of register, and (3) storing the value

of the register, in a critical section, we always get a correct result.

To make executions of critical sections mutually exclusive, a process wishing to enter a critical

section must issue an operation to get a permission. Dijkstra introduced an abstract data type called

semaphorein [Dij68]. To enter a critical section, a process must issue aP operation. If there is a

process being in a critical section at the time instant, the execution of the process is suspended until no

process is in a critical section. When a process exits a critical section, it issues aV operation to permit

another process to enter a critical section.1 Modern CPUs supportP andV or similar instructions (e.g.,

1To speak rigidly, operationsP andV are defined as follows: When a process performs aP operation, it executes next
instruction (i.e., it enters in a critical section) if there is no processes in a critical section. Otherwise, it is blocked until no

15

16 CHAPTER 1. INTRODUCTION

test-and-setinstruction) in order to solve the mutual exclusion problem.

In this dissertation, we discuss the mutual exclusion problem in a computer network (not in a single

computer).

1.2 Distributed Systems

Recently, a large number of computers are connected to a computer network. A set of computers

connected by a set of communication links is called adistributed system. We characterize distributed

systems by the absence of shared memory. In a distributed system, processes on a computer do their

tasks with other processes on remote computers. To achieve cooperative tasks (or competitive tasks),

processes must communicate with other processes via communication links since there is no shared

memory.

The following motivates distributed systems[Hag90, Hag93]:

• High performance — Since the system consists of several computers, independent tasks can be

processed in parallel. Load balancing is easy.

• Distribution of users — When users of the system are geometrically distributed, it is natural to

process tasks distributedly.

• Extensiveness— In general, addition of computers and communication links can be done easily

with small modification of the current system. Replacement of computers and communication

links is also easy. This property comes from the nature that distributed systems are loosely

coupled.

• Fault-tolerance — A centralized system cannot provide services when the central machine

stops by failure. Distributed systems may provide services if there are several alive components.

Distributed systems have many advantages compared with centralized systems. However, designing

distributed algorithms to control distributed systems is by no means easy because of the following

reasons: Computers must send/receive messages to other computers to get enough information to do

their tasks. Messages are delivered with delay and therefore in principle there is no way to capture

the global state of the system. In addition, there is no process which controls the entire distributed

system. Therefore, to achieve fault-tolerance, algorithms must consider failures such as process stops

and message losts.

1.3 The Distributed Mutual Exclusion Problem

When processes in a distributed system share a resource which must be accessed exclusively, the access

to the resource must be controlled as in the case of concurrent processes in stand-alone operating

processes are in a critical section. A process performs aV operation when it exits from critical section. The operating system
unblocks a process after a performance of aV operation.

1.4. THE DISTRIBUTEDK-MUTUAL EXCLUSION PROBLEM 17

systems. To enter a critical section, a process must assure that there is no process which is being in a

critical section in the distributed system.

Many algorithms have been proposed to solve the distributed mutual exclusion problem. They are

classified into two types[Ray91b]:

• Permission-based principle— A processP wising to enter a critical section requests some

other processes to permit it to enter a critical section. If a permission is given from each process

P is asking,P can enter the critical section.

• Token-based principle— There is an object called atokenin a distributed system and it travels

among processes. A process can enter a critical section while it is holding the token. The mutual

exclusion is guaranteed because there is only one token in the system and there are no two

processes having a token at the same time.

Several algorithms are surveyed in Chapter 2.

Consider a distributed system having two magnetic tape drivesA andB. Suppose that two processes

P andQ wish to use two magnetic tape drives. In such a case, we must be careful to avoid the state in

which P reservesA andQ reservesB, since bothP andQ are stuck forever if both of them request

another tape drive.Deadlockis the terminology to denote such situations.

We also avoid a starvation situation in which a request is not satisfied forever (i.e, a magnetic tape

drive cannot be allocated forever).

In designing a mutual exclusion algorithm, guaranteeing thedeadlock free propertyand thestarva-

tion free propertyare important issues. Note that once a deadlock happen, it cannot be solved; while

starvation can.

1.4 The Distributed k-Mutual Exclusion Problem

In the example of a distributed database described above, only one item is shared by processes. How-

ever, there are systems such thatk identical resources are shared by processes.

For example, consider a Ethernet local area network and many computers executing processes are

connected to it. Since Ethernet is a CSMA/CD (Carrier Sense Multiple Access with Collision Detect)

type local area network, the performance of the network becomes bad suddenly when computers send

packets frequently. To avoid such situation, a distributedk-mutual exclusion can be applied. The

bandwidth of a network can be considered as resources and a program fragment in which a process

sends a large amount of data via network can be considered as a critical section. When a process

wishes to send data, it must enter a critical section. Then the total amount of traffic of a network can

be controlled.

The simplest way of solving this problem is to solve the 1-mutual exclusion problem for each re-

source, i.e., we distinguish each resource by labeling a unique name and provide a mutual exclusion

algorithm for each resource. This is a simple solution, however, a process must choose which resource

it wish to use even if thek resources are identical. By this solution, many processes may be waiting

18 CHAPTER 1. INTRODUCTION

for a resource even if there are free resources. This motivates a study of distributedk-mutual exclusion

algorithms. The distributedk-mutual exclusion problem is the main theme of this dissertation.

1.5 Fault Tolerance of Distributed Systems

Fault tolerance is an important issue and it is desirable that distributed systems can tolerate from any

failures. But implementations of fault tolerance are difficult or sometimes impossible. For instance,

it is shown that there is no consensus algorithm in totally asynchronous system even if the number of

faulty process is one [FLP85, Tau91]. Thus, it is common to classify the failures into several classes

and fault tolerant systems are discussed by assuming failure classes.

For instance, failures are classified as follows [Hag90, Hag93]:

• Crash failure — Processes (or links) completely stop when an error occur. If a failure occurs,

it never send any message.

• Send-omission failure— Messages may be lost when sending.

• General-omission failure— Messages may be lost when sending and/or receiving.

• Byzantine failure — Processes may send strange messages to cheat other processes.

Although several computers and/or links may stop by power down and the value of memory cells

or messages on links may be lost, they have complete functionality and may work correctly again if

power is supply recovers. Such failures are calledtransient failures.

A system which tolerates against any transient failures is called aself-stabilizing systemand was

first discussed by Dijkstra [Dij74]. A self-stabilizing system is a system which converges without

centralized control to a legitimate (stable) system state even if any transient errors occur. In the latter

half of this dissertation, we propose several self-stabilizing mutual exclusion algorithms.

1.6 Organization of This Dissertation

This dissertation consists of two parts. We discuss the coterie approach of the distributedk-mutual

exclusion problem in Part I. The self-stabilization approach is discussed in Part II. Part I includes

Chapter 2 to Chapter 5 and Part II includes Chapter 6 to Chapter 7.

In Chapter 2, we discuss the coterie approach. Previous works for distributed mutual exclusion are

also reviewed in this chapter. Coterie is a set of process groups such that a process wishing to use

a resource must get permission from all processes of a process group. We propose a concept called

k-coterie as an extension of coterie. In Chapter 3, the availability of coterie is analyzed. Intuitively, the

availability is the probability that at least one process can use a resource in spite of process and/or link

failures. Since there existsk resources, the definition of availability is not enough. We introduce a new

measure called(k, r)-availability. The(k, r)-availability is the probability that at leastr processes can

1.6. ORGANIZATION OF THIS DISSERTATION 19

use resources at a time. Ifk = r = 1, the(k, r)-availability is the conventional availability. We show a

necessary and a sufficient conditions for a class of coteries calledk-majority coterie to be optimal in the

sense of(k, r)-availability. In Chapter 4, we propose a distributedk-mutual exclusion algorithm using

a k-coterie and its correctness is shown. To demonstrate the efficiency of the proposed algorithm, the

average message complexity of the algorithm is examined by computer simulations. The simulation

results is shown in Chapter 5. In the simulation, each process is executed on different workstations

connected to a local area network.

In Chapter 6, we discuss the self-stabilization approach. A self-stabilizing algorithm is an algorithm

which tolerates from any transient failures and therefore, initialization is not necessary for the system;

it converges to a stable state automatically. In this dissertation, we consider a uniform self-stabilizing

systems on ring networks. A system is calleduniformif all processes are identical and do not have pro-

cess identifiers. In Chapter 7, we propose several self-stabilizing mutual exclusion algorithms. First,

we propose a self-stabilizingk-mutual exclusion algorithm on rings whose sizes are primes. Next,

we consider the self-stabilizing 1-mutual exclusion problem as a special case. In [BP89], Burns and

Pachl showed that there exists no uniform deterministic self-stabilizing 1-mutual exclusion algorithm

if the number of processes on a ring is composite. We show that there exists a uniform probabilistic

self-stabilizing mutual exclusion algorithm when the number of processes is composite.

In Chapter 8, we summarize the results in this dissertation and present open problems and future

tasks.

Part I

The Coterie Approach

21

Chapter 2

The Coterie Approach for the
Distributed k-Mutual Exclusion

In Part I, we investigate the distributedk-mutual exclusion problem by taking the coterie approach.

First, we discuss the distributed mutual exclusion (i.e., the distributed 1-mutual exclusion) based on

coterie and survey previous works. Then, we motivate a study of the distributedk-mutual exclusion.

Finally, we introduce a conceptk-coterie to solve the distributedk-mutual exclusion problem.

2.1 Previous Works for the Distributed 1-Mutual Exclusion

The distributed 1-mutual exclusion problem is one of the fundamental distributed problems and many

algorithms to solve the problem have been proposed. In this section, we survey previous works of the

distributed 1-mutual exclusion.

2.1.1 The first distributed 1-mutual exclusion algorithm by Lamport

The first distributed mutual exclusion algorithm is proposed by Lamport [Lam78]. To guarantee mutual

exclusion, no deadlock, and no starvation, distributed mutual exclusion algorithms must have some

arbitration mechanism. To this end, he proposed alogical clock in totally asynchronous distributed

systems. A logical clock is defined as follows [Lam78]:

• Initially, a logical clock of every process is zero.

• When an internal (local) event (e.g., update of a variable) occurs at a processP , a logical clock

of P is incremented by one.

• When a processPs sends a messageM to Pd, the value ofPs’s logical clock, saycs, is attached

to M , i.e., a pair〈M, cs〉 is sent. WhenPd receives a message, it retrieves a clock value ofPs

(= cs) and compares with its own logical clockcd. Then,Pd’s logical clock is updated by taking

maximum of these two logical clocks. i.e.,cd := max(cd, cs).

23

24CHAPTER 2. THE COTERIE APPROACH FOR THE DISTRIBUTEDK-MUTUAL EXCLUSION

Note that this logical time has no relation to the physical time.

The priority among mutual exclusion requests is defined by a pair of a logical time at which a request

is issued and a process identifier of a requesting process. The pair of a logical time and a process

identifier is call atimestamp, and it is assumed that every request message contains a timestamp. Since

total ordering is defined on timestamps, processes can tell which request has the highest priority. Thus,

by usage of timestamps, his algorithm avoids starvations and deadlocks.

In his algorithm, a process which enters a critical section sends request messages to all the other

processes. When a process receives a request message, the request is put into a priority queue and

it sends a reply message to the requesting process. The requesting process enters a critical section if

it receives reply messages from the other processes and its request is the highest among items is its

priority queue. To exit from a critical section, it sends a release message to the other processes and

deletes its request from its queue. A process receiving a release message deletes the corresponding

item from the priority queue. For every invocation of a mutual exclusion, it must send messages to

the other processes in a distributed system. So, this algorithm is based on theunanimousconsensus

method and requires3(n − 1) messages per invocation of a mutual exclusion. If a process stops by

a failure then other alive processes cannot enter their critical sections; thus it is not a good algorithm

from the view point of the fault tolerance.

Ricart and Agrawala proposed an improved algorithm [RA81] which requires2(n − 1) messages

per invocation of mutual exclusion, but it sends a request message to every process like Lamport’s

algorithm. Carvalho and Roucairol further improved the algorithm to reduce the number of messages

[CR83, RA83].

2.1.2 Majority and voting

In Lamport’s algorithm and Ricart and Agrawala’s algorithm, a process must communicate with all

processes. To guarantee mutual exclusion, however, the unanimous consensus method is not necessary.

Thomas proposed themajorityconsensus algorithm to guarantee mutual exclusion [Tho79]. A process

which enters a critical section must get permissions from a majority of all processes. Assuming that

more than a half processes are alive, alive processes can enter their critical sections, i.e., they can

continue their tasks even if at most half of the system components stop. This algorithm is definitely

more resilient than Lamport’s algorithm [Lam78].

As a generalization of the majority method, Gifford proposed theweighted voting[Gif79]. Each

process is assigned a number of votes. A process must collect a majority of total votes to enter a

critical section. Note that the majority method by Thomas is a special case when each process has one

vote. Each computer has different reliability, in general. If more votes are assigned to more reliable

computers then it is expected that the availability of system increases. (Recall that the availability of

mutual exclusion is the probability that at least one process in a distributed system can enter a critical

section.) In addition, the number of processes that a process must exchange messages on an invocation

of a mutual exclusion can be controlled by changing vote assignments. As an extension of the weighted

voting, In [CAA90], Cheung, Ahamad and Ammar proposed the multi-dimensional voting method as

2.1. PREVIOUS WORKS FOR THE DISTRIBUTED 1-MUTUAL EXCLUSION 25

an extension of the voting method. The vote assigned to a process is a multi-dimensional vector.

2.1.3 Coterie

To decrease the number of messages per mutual exclusion invocation and to increase the availability,

the concept ofcoterieis proposed by Garcia-Molina and Barbara [GMB85]. The definition of coterie

is as follows.

Definition 1 Let U be the set of all processes. A setC = {Q1, Q2, ..., Qm} 6= ∅ is a coterieif and

only if the following conditions hold:

1. Non-emptiness: For eachi, Qi 6= ∅.

2. Intersection property: For eachi, j, Qi ∩ Qj 6= ∅.

3. Minimality: For eachi, j (i 6= j), Qi 6⊆ Qj.

Elements of a coterie is calledquorums. 2

A process wishing to enter a critical section sends a request message to every process in a quorum

Q ∈ C. If it can get permission from every processes in a quorum, it can enter a critical section. Mutual

exclusion is guaranteed because every two quorums has non-empty intersection and processes in an

intersection of quorums serve as an arbiter of mutual exclusion requests. It is shown that (1) every

voting assignment in the weighted voting scheme can be expressed in terms of coterie and (2) there

exists a coterie which cannot be expressed in terms of the vote assignment[GMB85]. Therefore, the

majority method [Tho79] and the centralized method are also expressed in terms of coterie. Coterie is

thus more powerful than the vote assignment method.

Garcia-Molina and Barbara [GMB85] proposed the conceptdominationof coteries.

Definition 2 LetQ andR be coteries.Q dominatesR if and only if a condition

∀R ∈ R∃Q ∈ Q[Q ⊆ R] ∧ Q 6= R

holds. A coterieQ is anon-dominated coterieif and only if there is no coterie which dominatesQ.

A coterieQ which dominatesR is better thanR because of the following reasons:

• Availability : Suppose that a set of alive processes isS. By definition of domination, if there

existsR ∈ R andR ⊆ S then there existsQ ∈ Q andQ ⊆ S. Intuitively, if a system usingR is

operational at the presence of failures then a system usingQ is also operational, but the opposite

is not always true.

26CHAPTER 2. THE COTERIE APPROACH FOR THE DISTRIBUTEDK-MUTUAL EXCLUSION

• Message complexity: Assume that a system usesR and that a process communicates with

processes inR ∈ R. By definition of domination, there is a quorum inQ ∈ Q such thatQ ⊆ R,

which implies that a process can useQ instead ofR if a system usesQ. BecauseQ ⊆ R, the

number of messages a process must send is smaller than or equal.

Several algorithms using coterie has been proposed. Maekawa proposed an algorithm using coterie

constructed from finite projective planes. The size of quorums of the coterie is approximately
√

n. He

showed that coteries based on finite projective planes are the optimal coteries in the sense that each

process has equal amount of responsibility to the mutual exclusion control. A process wishing to enter

a critical section sends a request message to every process in a quorum. It waits until permission is

granted by all process in the quorum. After exiting a critical section, it releases the permission. To

avoid deadlock, permissions are preempted according to the priority defined by Lamport [Lam78].

(Sanders pointed out that Maekawa’s algorithm may cause deadlocks [San87].) Each process requires

O(
√

n) messages per mutual exclusion invocation because the size of quorums is
√

n. Singhal pro-

posed a Maekawa-type deadlock free algorithm without additional messages for deadlock resolution

[Sin91].

Not only mutual exclusion algorithms but also properties of coteries and construction methods are

investigated by many researchers.

In [AA89], Agrawal and Abbadi proposed a coterie constructed by binary tree. The size of quorums

of a coterie varies fromlog n to ⌈n+1
2 ⌉. Kumar proposed a hierarchical quorum consensus and a coterie

with multilevel hierarchies whose quorum size isn0.63 [Kum91]. Ibaraki and Kameda investigated

properties of coteries from the point of view of boolean functions [IK91] and showed a characterization

of non-dominated coteries. Neilsen, Mizuno and Raynal proposed a method for constructing a complex

coterie from simple coteries [NM92, NMR92].

2.1.4 Study on fault tolerance

Barbara and Garcia-Molina discussed the availability of mutual exclusion [BGM87]. They showed

several heuristics for vote assignment to increase the availability of mutual exclusion for arbitrary

network topology. When the network topology is complete, the communication links never fail, and

reliability of each process isp > 0.5, then the majority method [Tho79] is shown to be optimal in the

sense of availability. Rangarajan and Tripathi proposed a variation of finite projective planes based

coteries to increase the availability. The quorum size of the coterie is
√

n log n.

2.1.5 Token-based algorithms

The above algorithms are based on he permission-based principle, i.e., a process can enter its critical

section only if certain permission is granted.

Algorithms based on the token-based principle have also been proposed. Suzuki and Kasami pro-

posed an algorithm which requires at mostn messages per invocation on mutual exclusion [SK85].

An imaginary object calledtokenis provided in the system and a process which holding the token is

2.2. PREVIOUS WORKS FOR THE DISTRIBUTEDK-MUTUAL EXCLUSION 27

the process which has the privilege to enter its critical section. If a process holds a token then it is

not necessary to send any request messages. Otherwise, it sends a request message to every process.

In their algorithm, the sequence number is used to guarantee deadlock freedom and starvation free-

dom. Suzuki and Kasami also showed an algorithm with bounded sequence number. The algorithm

proposed by Ricart and Agrawala [RA81] also uses the sequence number but the value is unbounded.

Raymond proposed another token-based algorithm [Ray89b]. Her algorithm dynamically maintains

a directed spanning tree of a network. The direction of an edge of a spanning tree indicates the direction

of a token. A request message is forwarded along directed edges of a spanning tree. This method

does not require a process sending its request message to all processes. The number of messages

required per invocation of mutual exclusion depends on the topology of tree but typicallyO(log n)

under light demands of mutual exclusions. In the case that the demands of mutual exclusions are

heavy, approximately four messages are necessary. Satyanarayanan and Muthukrishnan proposed a

modification of Raymond’s algorithm such that it can provide least executed criterion as a fairness

policy of mutual exclusion by processes [SM92].

Mizuno, Neilsen and Rao proposed an algorithm based on token-based principle using coteries

[MLR91]. A process which is requesting to enter a critical section sends a request message to a

process of a quorum of a coterie.

2.2 Previous Works for the Distributed k-Mutual Exclusion

In this section, we review previous works for the distributedk-mutual exclusion problem. An algorithm

for distributedk-mutual exclusion can be constructed fromk mutual exclusion algorithms. That is, we

namek resources distinct names and a process wishing to use a resource chooses a resource name

amongk resources and issue a request for the mutual exclusion algorithm for the resource. This is a

simple solution but has a drawback. Suppose that every process specifies the same resource, they must

wait a long time even if there are free resources. By this reason, several distributedk-mutual exclusion

algorithms have been proposed.

The first distributedk-mutual exclusion algorithm is proposed by Raymond [Ray89a]. Her algo-

rithm is a modification of Ricart and Agrawala’s distributed 1-mutual exclusion algorithm [RA81].

According to her algorithm, a process must send a request message to every process in a distributed

system. It can enter a critical section if it receivesn − k reply messages, wheren is the number of

processes. The algorithm requires2n−k−1 messages in the best case and2(n−1) in the worst case.

This algorithm tolerates from failures of arbitraryk − 1 processes. In [BC94], Baldoni and Ciciani

proposed a modification of Raymond’s algorithm [Ray89a] so that it can provide priorities (e.g., short

job first) for mutual exclusion requests. To avoid starvations, they used gated batch priority queues.

Raynal proposed a resource allocation algorithm in [Ray91a]. He discussed allocation of any amount

of resources amongM identical resources. This is a generalization ofk-mutual exclusion because

k-mutual exclusion can be considered requesting one resource amongk resources. The algorithm

proposed by Raynal also sends a request message to every processes.

28CHAPTER 2. THE COTERIE APPROACH FOR THE DISTRIBUTEDK-MUTUAL EXCLUSION

In [SR92], Srimani and Reddy proposed another algorithm which is a modification of Suzuki and

Kasami’s algorithm [SK85]. The number of messages necessary for each mutual exclusion invocation

is a half of that for Raymond’s algorithm. The algorithm is token-based andk tokens are circulated to

guaranteek-mutual exclusion.

2.3 Models andk-Coteries

In this section, the computational model we assume in Part I is described. Adistributed systemconsists

of n processesand bidirectionalcommunication linksconnected between all pairs of processes. (That

is, the network topology is a complete graph.) We assume that the structure of a program that each

process executes is as follows:

ProcessPi;

begin
while true do

begin

Non-Critical Section

〈Enter a Critical Section〉

Critical Section

〈Exit from a Critical Section〉

Non-Critical Section

end

end.

Each process executes the same program, but has unique process identifier. Without loss of generality,

we assume that process identifiers are positive integers, which every process knows. Processing speed

of processes may be different. Some processes may execute a program fast and others may do really

slow; the processing speed of processes may change even during the execution of a program. But it is

guaranteed that a process can execute its next instruction within a finite time unless the execution of

its algorithm has been terminated.

Each process has its ownlocal clock. Each local clock may indicate different time, and no processes

can tell the global time.1 Therefore, processes cannot make use of their local clocks to synchronize
1The definition of the distributedk-mutual exclusion problem requires the existence of the global time.

2.3. MODELS ANDK-COTERIES 29

with other processes.

Since there is no centralized control to solve the problem and the only mechanism provided in

the system for information exchange between processes is themessage passing, i.e., processes do

not have shared memory, processes must collect enough information from other processes through

communication links. We assume that links are error-free.

Each process has a message queue of infinite length, which stores messages arrived to it. Operations

provided for the message passing are as follows.

• SENDoperation

SEND is used to send a message. To send a message, a destination process must be specified.

Messages sent by a process are eventually put into the message queue of the destination process

in a finite time.

• RECEIVE operation

As described, each process maintains a message queue. The first message in the queue is re-

trieved by issuing RECEIVE. We assume that a process can tell if the queue is empty or not.

The order of messages is kept unchanged during the delivery. That is, if a processP1 sends messages

m1 andm2 in this order toP2 thenP2 receivesm1 andm2 in the same order. It is guaranteed that

each message is delivered in a finite time. But the message delivery delay is unpredictable; the delay

may vary during the execution of a program.

Consider extending the concept of coterie fork-mutual exclusion. (The definition of coterie is shown

in definition 1.) The 1-mutual exclusion is guaranteed because there are no two distinct quorums in a

coterie. Thus,k processes can be in their critical sections if there arek distinct quorums, andk + 1

processes cannot be in their critical sections at a time if there are nok + 1 distinct quorums. By this

intuition, we have the concept ofk-coterie. The formal definition is as follows.

Definition 3 A non-empty setC of non-empty subsetsq of U is called ak-coterieif and only if all of

the following three conditions hold:

1. Non-intersection property:

For anyh(< k) elementsQ1, ..., Qh ∈ C such thatQi ∩Qj = ∅ (i 6= j) for 1 ≤ i, j ≤ h, there

exists an elementQ ∈ C such thatQ ∩ Qi = ∅ for 1 ≤ i ≤ h.

2. Intersection property:

For anyk + 1 elementsQ1, ..., Qk+1 ∈ C, there exists a pairQi andQj such thatQi ∩Qj 6= ∅.

3. Minimality property:

For any two distinct elementsQi andQj in C, Qi 6⊆ Qj .

An elementq of ak-coterieC is called a quorum. 2

30CHAPTER 2. THE COTERIE APPROACH FOR THE DISTRIBUTEDK-MUTUAL EXCLUSION

Note that a 1-coterie is a coterie, and therefore, the concept of ak-coterie is an extension of a coterie.

Example 1 Let U = {1, 2, ..., 6}. The followingC1, ..., C5 are k-coteries (k = 1, 2, 3) underU .

Note that a condition∪iQi = U does not have to be true by the definition ofk-coterie.

• k = 1

C1 = {{1}}

C2 = {{1, 2}, {2, 3}, {3, 1}}

• k = 2

C3 = {{1}, {2}}

C4 = {{1, 2}, {3, 4}, {3, 4}, {4, 1}}

• k = 3

C5 = {{1, 4}, {2, 5}, {3, 6}, {1, 5}, {2, 6}, {3, 4}, {1, 6}, {2, 4}, {3, 5}}

2

A majority method can be defined fork-mutual exclusion. The followingk-coterie, ak-majority

coterie, is a coterie that each quorums consists of anyW = ⌈(n+1)/(k+1)⌉ processes. This is called

k-majority sinceW is approximatelyn/k and there are nok + 1 groups ofW processes.

Definition 4 Let W = ⌈(n + 1)/(k + 1)⌉, wheren is the number of processes. The setMajk =

{Qi | Qi ⊆ U, |Qi| = W} is called ak-majority coterie. 2

A majority coterie is defined whenn ≥ k2.2 A k-coterie which corresponds to primary the site

method is called ak-singleton coterie. A k-singleton coterie is ak-coterie which consists ofk quorums

such that each quorum consists of one process.

Definition 5 A k-singleton coterie Sglk is a set{{P1}, . . . , {Pk}}, wherePi ∈ U for i = 1, . . . , k,

andPi’s are distinct. 2

2In [MYKC94], Yuang and Chang claimed thatn andk must satisfy following two conditions so that thek-majority coterie
is ak-coterie:

• kW ≤ n,

• (k + 1)W > n

whereW is an integer.

2.3. MODELS ANDK-COTERIES 31

Fujita et al. proposed a construction algorithm of ak-coterie whose quorum size isO(
√

n log n)

in [FYA91]. Like a concept domination for coteries, a concept domination fork-coteries can be de-

fined. Nielsen and Mizuno extended the concept of non-domination fork-coteries [NM94]. They also

proposed a composition method fork-coteries.

Huang, Jiang and Kuo also reachedk-coterie independently, which is slightly different from ours,

and investigated availability [STHK93]. Baldoni proposedk-coterie [Bal94b, Bal94a], which is com-

pletely different from ours. Hisk-coterie requests that ‘intersection of anyk quorums is non-empty’.

This idea is based on the following: every process hask permissions and a process wishing to enter

a critical section gets a permission from each process in a quorum. Ifk processes are in their critical

sections then another process wishing to enter a critical section cannot get permissions since the inter-

section of anyk quorums is non-empty, which implies that there exists a process which passed all its

permission to other process. The message complexity of their algorithm is3⌈nk/(k+1) − 1⌉ in the best

case and5⌈nk/(k+1) − 1⌉ in the worst case.

Chapter 3

Availability of k-Coterie

In this chapter, we investigate the availability of the distributedk-mutual exclusion byk-coterie. In

[BGM87], Barbara and Garcia-Molina showed that if the network topology is complete and communi-

cation links never fail and the reliability of each process isp > 0.5 then the majority method [Tho79]

is optimal in the sense of availability. It is conjectured that ak-majority coterie is an optimal coterie

under some conditions because ak-majority coterie is a natural extension of majority coterie (a coterie

corresponding to the majority method). In this section, we investigate the optimality ofk-majority

coteries. Not onlyk-majority coterie but alsok-singleton coterie is investigate in this chapter.

3.1 Assumptions and Definitions

Before investigation of availability ofk-coteries, we describe assumptions and define several concepts.

We investigate the availability ofk-coteries under the following assumptions:

1. The network topology of a distributed system is a complete graph; between each pair of pro-

cesses, there is a bidirectional communication link.

2. The communication links never fail.

3. For all processesP , the reliability ofP , i.e., the probability ofP being in operation, is the same

constant0 ≤ p ≤ 1.

Availability is a probability that at least one process can achieve mutual exclusion in the case of the

1-mutual exclusion. For the purpose of investigation of fault-tolerance of thek-mutual exclusion, we

extend this concept. Sincek processes may enter their critical sections, the probability thatr processes

can enter their critical sections can be considered as a measure of fault-tolerance of thek-mutual

exclusion, wherer is an integer such that1 ≤ r ≤ k. This idea is formalized as a concept of the

(k, r)-availability.

Definition 6 Let C be ak-coterie overU , andr (1 ≤ r ≤ k) be an integer. The(k, r)-characteristic

functionFC,k,r of C is a function from2U to {0, 1} defined as follows:

33

34 CHAPTER 3. AVAILABILITY OF K-COTERIE

For eachS ⊆ U , FC,k,r(S) = 1 if and only if there existr quorumsQ1, ..., Qr ∈ C satisfying both

of the following two conditions;

Qi ∩ Qj = ∅ for 1 ≤ i, j ≤ r, i 6= j, and

for all i, Qi ⊆ S.

2

That is,FC,k,r(S) = 1 if and only if r processes can enter their critical sections, provided that all

processes inS are being up.

Definition 7 LetC be ak-coterie, andr (1 ≤ r ≤ k) be an integer. The(k, r)-availability Rk,r(C) of

C is the probability that at leastr processes can enter a critical section.

More formally, letG = (V, E) be the topology of the distributed system under consideration. Let

V ′ and E′ be, respectively, the sets of processes and links in operation, andPr(V
′, E′) denote the

probability that this situation occurs. The topology of the distributed system in operation is the graph

G′ = (V ′, (V ′×V ′)∩E′). We say a quorumQ ∈ C is available with respect toG′ if Q is a subset of the

vertex set of a connected component ofG′. If there arer distinct available quorumsQ1, . . . , Qr ∈ C
with respect toG′ such thatQi ∩ Qj = ∅ for 1 ≤ i, j ≤ r, i 6= j, we say thatG′ is r-available. Then

the(k, r)-availability ofC onG is defined as follows :

RG,k,r(C) =
∑

G′is r-available

Pr(V
′, E′)

The(k, r)-availability depends onG. Because we assume thatG is complete in this dissertation, we

omitG fromRG,k,r. 2

Note that the (1,1)-availability coincides with the availability.

Let S be a set of processes being in operation. Then,FC,k,r(S) = 1 if and only if at leastr

processes can enter a critical section (i.e.,G′ = (S, (S × S) ∩E) is r-available) since the topology of

the distributed system is a complete graph. On the other hand, the probability that the set of processes

being in operation is exactlyS is p|S|(1 − p)n−|S|. Thus, the(k, r)-availability of a coterieC can be

calculated using the following formula:

Rk,r(C) =
∑

S⊆U

FC,k,r(S)p|S|(1 − p)n−|S|.

Let C be ak-coterie, andr (1 ≤ r ≤ k) be an integer. Now, we construct a newk′-coterieC′ as

follows:

First, let

C′ = {Q | Q = Q1 ∪ · · · ∪ Qr, Qi ∈ C for 1 ≤ i ≤ r,

andQi ∩ Qj = ∅ for 1 ≤ i, j ≤ r, i 6= j}.

3.2. K-MAJORITY COTERIES 35

Next, we remove all elementsQ from C′ such thatQ′ ⊆ Q for someQ′ ∈ C′, in order for the

resultantC′ satisfying the minimality property. ThenC′ has the following properties.

Property 1 C′ is a ⌊k
r ⌋-coterie. 2

Property 2 Letk′ = ⌊k
r ⌋. Then,

FC,k,r = FC′,k′,1.

Hence,

Rk,r(C) = Rk′,1(C′).

2

We callC′ ther-contracted coterieof C.

3.2 k-Majority Coteries

We investigatek-majority coteries Majk in terms of the(k, r)-availability.

Theorem 1 Let n be the number of processes,k be an integer such that(n + 1) is a multiple of

(k + 1), andr (1 ≤ r ≤ k) be an integer. Then, there is a constantpu(n, k, r) such that for any

process reliabilityp (pu(n, k, r) ≤ p ≤ 1), Majk achieves the maximum(k, r)-availability. Hence,

Majk is the bestk-coterie in terms of the(k, r)-availability if p ≥ pu(n, k, r), where

pu(n, k, r) =
c(n, k, r)

c(n, k, r) + 1
,

and

c(n, k, r) =

rW−1
∑

i=0

(

n

i

)

.

(Proof) Let C (6= Majk) be anyk-coterie. We show thatRk,r(Majk) ≥ Rk,r(C) for any p ≥
pu(n, k, r). Let W = ⌈(n + 1)/(k + 1)⌉ (i.e.,W is the size of each quorum in Majk).

Let C be anyk-coterie such thatRk,r(C) > Rk,r(Majk). If every quorumQ in C had size≥ W ,

thenRk,r(Majk) ≥ Rk,r(C) would hold, because ifFC,k,r(S) = 1 thenFMajk,k,r(S) = 1 for any

S ⊆ U , since|S| ≥ rW . Therefore, there exists a quorumQ0 with size< W in C.

First, we show that there exists a setS (⊆ U) with sizerW such thatFC,k,r(S) = 0. Suppose

that for anyS with sizerW , FC,k,r(S) = 1 holds. LetU1 = U − Q0. Since|U1| ≥ n − W + 1,

|U1| ≥ kW . Arbitrarily choose a setS (⊆ U1) with sizerW . SinceFC,k,r(S) = 1, there is a quorum

Q1 (⊆ S) in C whose size is at mostW . Then we repeat this procedure forU2 = U1 − Q1. In

this way, we repeat this procedure(k − r) times and can find a sequence of quorumsQ0, ..., Qk−r in

C. Clearly,Qi ∩ Qj = ∅ for 0 ≤ i, j ≤ (k − r), i 6= j. Since|Qi| ≤ W for 0 ≤ i ≤ (k − r),

36 CHAPTER 3. AVAILABILITY OF K-COTERIE

k, W, n r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

k = 1, W = 5, n = 9 0.9961089 — — — — —
k = 2, W = 5, n = 14 0.9993207 0.9999329 — — — —
k = 3, W = 4, n = 15 0.9982669 0.9999390 0.9999689 — — —
k = 4, W = 3, n = 14 0.9906542 0.9997121 0.9999226 0.9999386 — —
k = 5, W = 3, n = 17 0.9935484 0.9998937 0.9999847 0.9999918 0.9999924 —
k = 6, W = 3, n = 20 0.9952830 0.9999539 0.9999962 0.9999987 0.9999990 0.9999990

Table 3.1:pu(n, r, k) for somen (k = 1, ..., 6, r = 1, ..., k).

|Uk−r+1| ≥ rW . Thus, there existr quorumsQk−r+1, ..., Qk(∈ C) in Uk−r+1 such thatQi ∩Qj = ∅
for k − r + 1 ≤ i, j ≤ k, i 6= j. It is a contradiction, sinceQi ∩ Qj = ∅ for 0 ≤ i, j ≤ k, i 6= j.

Then, there exists a setS (⊆ U) with sizerW such thatFC,k,r(S) = 0. Let ∆ = Rk,r(Majk) −
Rk,r(C). SinceFMajk,k,r(S

′) = 1 for everyS′ with sizerW , by definition,

∆ ≥ p|S|(1 − p)n−|S| −
rW−1
∑

i=0

(

n

i

)

pi(1 − p)n−i

≥ prW (1 − p)n−rW − c(n, k, r)prW−1(1 − p)n−rW+1,

where

c(n, k, r) =

rW−1
∑

i=0

(

n

i

)

.

It is easy to show that∆ ≥ 0 if

p ≥ c(n, k, r)

1 + c(n, k, r)
= pu(n, k, r).

2

Sincec(n, k, r) < c(n, k, r + 1), the following corollary holds.

Corollary 1 If p ≥ pu(n, k, k), thenMajk is optimal in the sense of(k, r)-availability for all 1 ≤ r ≤
k. 2

Table 3.1 showspu(n, k, r) (k = 1, . . . , 6 andr = 1, . . . , k) for somen.

Theorem 2 For any non-negative integerm, (2m + 1)-majority coterieMaj2m+1 achieves the max-

imum (2m + 1, m + 1)-availability, if the process reliabilityp ≥ 1
2 and (n + 1) is a multiple of

2(m + 1).

3.2. K-MAJORITY COTERIES 37

(Proof) LetC (6= Maj2m+1) be any(2m + 1)-coterie, and assume thatC achieves a better(2m +

1, m+1)-availability than Maj2m+1 for somep ≥ 1
2 . By C′, we denote the(m+1)-contracted coterie

of C. Then by Property 1,C′ is a 1-coterie. By definition of Majk, the(m + 1)-contracted coterie of

Maj2m+1 is 1-majority coterie Maj1, since(n+1) is a multiple of2(m+1). Since Maj1 (i.e., majority

coterie) achieves the maximum(1, 1)-availability (i.e., availability) for allp ≥ 1
2 (Theorem 3.1 in

[BGM87]), the(1, 1)-availability of Maj1 is not smaller than that ofC′, a contradiction by Property 2.

2

So far, we have derived a sufficient condition fork-majority coterie to be optimal in terms of the

process reliabilityp. Now, we proceed to state a lower bound on the process reliabilityp for k-majority

coterie to be optimal. We first present how to construct a newk-coterieC fromk-majority coterie Majk,

and then by comparing their(k, r)-availabilities, derive the necessary condition.

Arbitrarily choosen, k, andr (such that(n+1) is a multiple of(k +1), and fix them. We construct

ak-coterieC from Majk as follows: LetQ0 be any quorum in Majk, andP0 be any element inQ0. Let

Q1 = Q0 − {P0}. Then,

C = Majk + {Q1} − {Q ∈ Majk | Q = Q1 + {P}, P ∈ U − Q1}
−{Q ∈ Majk | Q ∩ Q0 = {P0}}.

We compare their availabilities. Observe thatFC,k,r(S) = 1 for all S ⊆ U with size at leastrW +1,

and thatFC,k,r(S) = 0 for all S ⊆ U with size at mostrW − 2, whereW = (n + 1)/(k + 1) (i.e., the

size of quorum in Majk). On the other hand, by definition,FMajk,k,r(S) = 1 if and only if |S| ≥ rW .

DefineΓ+ andΓ− as follows:

Γ+ = {S ⊆ U | FMajk,k,r(S) = 0 & FC,k,r(S) = 1}
Γ− = {S ⊆ U | FMajk,k,r(S) = 1 & FC,k,r(S) = 0}

Note that by the observations,|S| = rW − 1 if S ∈ Γ+, and|S| = rW if S ∈ Γ−. SinceQ1 is the

only quorum with sizeW − 1 in C, S ∈ Γ+ if and only if Q1 ⊆ S, P0 6∈ S, and|S| = rW − 1, by

definition ofC. Therefore,

|Γ+| =

(

n − W

rW − 1 − (W − 1)

)

=

(

kW − 1

(r − 1)W

)

.

Next, we show thatS ∈ Γ− if and only if Q1 ∩ S = ∅, P0 ∈ S and |S| = rW . To show if

part, assume thatFC,k,r(S) = 1 holds (sinceFMajk,k,r(S) = 1). SinceP0 ∈ S, there is a quorum

38 CHAPTER 3. AVAILABILITY OF K-COTERIE

Q containingP0 in C, a contradiction sinceQ ∩ Q0 = {P0}. As for only if part, if eitherP0 6∈ S

or Q1 ∩ S 6= ∅, then one can easily findr quorumsG1, ..., Gr in C such thatS =
⋃r

i=1 Gi and

Gi ∩ Gj = ∅ for 1 ≤ i, j ≤ r, i 6= j. Therefore,

|Γ−| =

(

n − W

rW − 1

)

=

(

kW − 1

rW − 1

)

.

By definition,

∆ = Rk,r(C) − Rk,r(Majk)

= |Γ+|prW−1(1 − p)n−(rW−1) − |Γ−|prW (1 − p)n−rW

= prW−1(1 − p)n−rW ×
{(

kW − 1

(r − 1)W

)

(1 − p) −
(

kW − 1

rW − 1

)

p

}

.

Therefore,∆ > 0 if and only if

p >

(

kW−1
(r−1)W

)

(

kW−1
(r−1)W

)

+
(

kW−1
rW−1

) .

2

Theorem 3 Let n be the number of processes,k be an integer such that(n + 1) is a multiple of

(k + 1), andr (1 ≤ r ≤ k) be an integer. Then, there is a constantpl(n, k, r) such that for any

process reliabilityp (0 < p < pl(n, k, r)), Majk does not achieve the maximum(k, r)-availability.

Hence,Majk is not the bestk-coterie in terms of(k, r)-availability if 0 < p < pl(n, k, r), where

pl =

(

kW−1
(r−1)W

)

(

kW−1
(r−1)W

)

+
(

kW−1
rW−1

) .

2

Table 3.2 showspl(n, k, r) (k = 1, . . . , 6, r = 1, . . . , k) for somen.

3.3 k-Singleton Coteries

This section shows a sufficient condition fork-singleton coteries to be optimal in terms of the process

reliability p.

Theorem 4 Let n be the number of processes, andk (≤ n) and r (1 ≤ r ≤ k) be integers. Then,

there exists a constantq(n, k, r) > 0 such that (any)k-singleton coterieSglk is optimal for all process

3.4. CONCLUDING REMARKS 39

k, W, n r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

k = 1, W = 5, n = 9 0.5000000 — — — — —
k = 2, W = 5, n = 14 0.0078740 0.9921260 — — — —
k = 3, W = 4, n = 15 0.0060241 0.5000000 0.9939759 — — —
k = 4, W = 3, n = 14 0.0178571 0.2631579 0.7368421 0.9821429 — —
k = 5, W = 3, n = 17 0.0108696 0.1538462 0.5000000 0.9891304 0.9891304 —
k = 6, W = 3, n = 20 0.0072993 0.0099010 0.3373494 0.6626506 0.9009901 0.9927007

Table 3.2:pl(n, r, k) for somen (k = 1, ..., 6, r = 1, ..., k).

reliability p (0 ≤ p ≤ q(n, k, r)). Hence,Sglk is the bestk-coterie in the sense of(k, r)-availability if

p ≤ q(n, k, r).

(Proof) LetC be anyk-coterie which is not ak-singleton coterie. We show that there exists a constant

t > 0 such that for all process reliabilityp (0 ≤ p ≤ t), the(k, r)-availability of Sglk is larger than or

equal to that ofC. The proof here is similar to that of Theorem 1.

Let ∆ = Rk,r(Sglk) − Rk,r(C). By definition, for allS with size at mostr − 1, FSglk,k,r(S) =

FC,k,r(S) = 0. Define

m0 =
∣

∣{S | FSglk ,k,r(S) = 1, |S| = r}
∣

∣, and

m1 =
∣

∣{S | FC,k,r(S) = 1, |S| = r}
∣

∣.

Then, clearly,m0 > m1, sinceC is not ak-singleton coterie. Therefore, by definition,

∆ ≥ pr(1 − p)n−r −
n

∑

i=r+1

(

n

i

)

pi(1 − p)n−i.

It is easy to see that there is a constantt such that∆ ≥ 0 for all p (0 ≤ p ≤ t).

Since the number of differentk-coteries are finite, the theorem follows. 2

3.4 Concluding Remarks

In this chapter, we investigated the goodness of two typicalk-coteries,k-majority coteries andk-

singleton coteries, in terms of the(k, r)-availability. Intuitive interpretation of the(k, r)-availability

of a k-coterie is the probability thatr processes can enter their critical sections (in spite of process

failures).

We derived a necessary and a sufficient conditions on the process reliabilityp for k-majority coterie

to achieves the maximum(k, r)-availability. We also showed that there is a constantq (> 0) such

that for any process reliability0 < p < q, (any)k-singleton coterie achieves the maximum(k, r)-

availability. The investigation revealed thatk-majority (k ≥ 2) is no longer optimal for allp > 1
2 . (As

a matter of a result, 3-majority is not optimal even ifp = 0.9939 for n = 15 andr = 3.)

Table 3.3 shows the(k, r)-availability of k-majority andk-singleton coteries whenn = 14 and

k = 4. It can be observed that asr increases, the process reliabilityp at which the(k, r)-availabilities

40 CHAPTER 3. AVAILABILITY OF K-COTERIE

p

k, r 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

4, 1 Majk 0.0000 0.1584 0.5519 0.8392 0.9602 0.9935 0.9994 1.0000 1.0000 1.0000 1.0000
Sglk 0.0000 0.3439 0.5904 0.7599 0.8704 0.9375 0.9744 0.9919 0.9984 0.9999 1.0000

4, 2 Majk 0.0000 0.0015 0.0439 0.2195 0.5141 0.7880 0.9417 0.9917 0.9996 1.0000 1.0000
Sglk 0.0000 0.0523 0.1808 0.3483 0.5248 0.6875 0.8208 0.9163 0.9728 0.9963 1.0000

4, 3 Majk 0.0000 0.0000 0.0004 0.0083 0.0583 0.2120 0.3373 0.6405 0.8883 0.9985 1.0000
Sglk 0.0000 0.0037 0.0272 0.0837 0.1792 0.3125 0.4752 0.6517 0.8192 0.9477 1.0000

4, 4 Majk 0.0000 0.0000 0.0000 0.0000 0.0006 0.0065 0.0398 0.1608 0.4481 0.8416 1.0000
Sglk 0.0000 0.0001 0.0016 0.0081 0.0256 0.0625 0.1296 0.2401 0.3164 0.5220 1.0000

Table 3.3:(k, r)-availabilities of Majkand Sglk(k = 4, n = 14).

of Sglk and Majk reverse also increases. For example, the(4, 4)-availability of Sgl4 is larger than

that of Maj4 even ifp = 0.7, but the(4, 1)-availability of Maj4 has already been larger than that of

Maj4 whenp = 0.3. (This tendency can be shown formally.) Therefore, when we choose appropriate

k-coteries in practical applications, we should take into account parameterr as an important one.

For simplicity of analysis, throughout the chapter we assume that(n + 1) is a multiple of(k + 1),

whenk-majority is investigated. It is strongly conjectured that the tendencies ofk-majority in this

chapter should hold for generalk, and an analysis of this case is left as a future work.

Chapter 4

A Distributed k-Mutual Exclusion
Algorithm using k-Coterie

In this chapter, we propose a distributedk-mutual exclusion algorithm which uses ak-coterie. Differ-

ent from algorithms proposed in [Ray89a, Ray91a, SR92], the number of messages sent by processes

can be smaller. Another advantage of this algorithm is that it provides so-called the graceful degrada-

tion property; since a critical section entrance request is granted if all members in a quorum grant it,

even though a large part of the system are being down, there is a possibility that a process can enter a

critical section.

4.1 The Distributed k-Mutual Exclusion Algorithm

To avoid deadlocks and starvations, the timestamp introduced by Lamport[Lam78] is used. Lett be the

logical time at which a processP initiates a request. Then, the pair(t, P) is the timestamp attached

to the request. Note that since an identifier of a process is unique, so is pair(t, P). As usual, we

define a total order among timestamps by the lexicographical order assuming that the identifiers are

non-negative integers.

Now, we present a detailed description of our algorithm. Our algorithm and Maekawa’s algorithm

[Mae85]1 are the same, except the following difference:

In Maekawa’s algorithm, for each processP , a quorumQ is statically determined, and insists on

gathering permission from all members inQ. This approach may be reasonable for solving the 1-

mutual exclusion problem, since failing to gather permission fromQ likely suggests that another pro-

cess is being in a critical section, i.e.,P cannot gather permission from any quorum. On the other hand,

when thek-mutual exclusion problem is considered, insisting onQ does not seem to be a good idea,

since althoughQ is busy,P may be able to find another quorum from which it can gather permission,

1It is shown that Maekawa’s algorithm[Mae85] cannot avoid deadlocks [San87]. We adopt the version suggested by
Sanders[San87].

41

42CHAPTER 4. A DISTRIBUTEDK-MUTUAL EXCLUSION ALGORITHM USING K-COTERIE

because there are(k − 1) quorums which do not intersect withQ. Thus, our algorithm tries to find

such a quorum.

LetC be ak-coterie. Each processP has local variables YES, NOTNOW, and PERM. Variables YES

(resp. NOTNOW) keeps the set of processes which have agreed (by message OK) (resp. disagreed

(by message WAIT)) onP entering a critical section, and variable PERM keeps the process (i.e., more

rigorously, the REQUEST it initiates) thatP has agreed on entering a critical section (by message

OK) but has not yet received a message RELEASE stating that it has left the critical section, if there

is such a process. SinceP never give permission to two processes at a time, PERM is either empty or

a singleton set. Initially, YES, NOTNOW, and PERM are the empty set. Note thatP may receive OK

messages from processes in NOTNOW. In such cases, these processes are moved from NOTNOW to

YES. The processP also maintains a priority queue QUEUE for keeping REQUESTs in the order of

their timestamps.

The algorithm is given in English as in many literatures (e.g., [Mae85]) to save space.

The Algorithm

• WhenP wishes to enter a critical section:

It selects a quorumQ from C, and sends REQUEST(t, P) to every memberPj in Q (including

P itself), and waits for a reply (OK or WAIT) fromPj , where(t, P) is the timestamp (i.e.,t is

the current logical local time inP). If everyPj answers an OK,P can enter the critical section.

If some processes answer WAITs,P adds the processes answering OK (resp. WAIT) to YES

(resp. NOTNOW), selects another quorumQ′ which minimizes|Q ∩ YES| from quorums inC
not intersecting with NOTNOW (if there is such a quorum), and repeats the procedure from the

first, except that this time,P sends REQUEST(t, P) only to members in(Q′−YES). (Hence,

each process receives at most one REQUEST message fromP .) If P cannot find a quorum

satisfying the condition, thenP waits for receiving OK messages.

During the above procedure,P may receive an OK from a processPj in NOTNOW. Then,P

tests if a quorum is included in YES after movingPj from NOTNOW to YES, andP can enter

the critical section if the test succeeds.

• WhenP leaves the critical section:

It sends a RELEASE message to each process in YES∪NOTNOW.

• WhenP receives REQUEST(t, Pj) from a processPj : ProcessP sends back OK, if PERM is

empty, and adds REQUEST(t, Pj) to PERM.

If PERM is {REQUEST(ts, Ps)}, i.e., not empty, thenP acts as follows. ProcessP in-

serts REQUEST(t, Pj) in QUEUE. Let REQUEST(tr, Pr) be the request having the smallest

timestamp (i.e., the one having the highest priority) among those in QUEUE. If(t, Pj) >

min{(ts, Ps), (tr, Pr)}, thenP sends back a WAIT toPj . Otherwise, i.e., if REQUEST(t, Pj)

4.2. CORRECTNESS PROOFS 43

has the highest priority,P sends a message QUERY to resume the permission fromPs un-

lessPs is being in a critical section, and waits for a reply (RELINQUISH or RELEASE)

from Ps. (If P has already sent a QUERY toPs and is waiting for a reply, then no fur-

ther QUERYs are necessary to send.) IfP receives a RELINQUISH, then it exchanges

REQUEST(ts, Ps) and REQUEST(t, Pj), i.e., it moves REQUEST(ts, Ps) from PERM to

QUEUE and REQUEST(t, Pj) from QUEUE to PERM, sends a WAIT to all processes in

QUEUE to whichP has not sent a WAIT since the last QUERY was issued, and finally sends an

OK to Pj .

• WhenP receives a RELEASE message fromPj :

P removes the request fromPj in PERM. If QUEUE is not empty, then let REQUEST(tr, Pr)

be the request having the highest priority in QUEUE. Then,P moves it from QUEUE to PERM,

sends an OK toPr, and sends a WAIT to all processes in QUEUE to whichP has not sent a

WAIT since the last QUERY was issued.

• WhenP receives a QUERY message fromPj :

If P is not in a critical section andPj is in YES, thenP movesPj from YES to NOTNOW and

sends back a RELINQUISH message toPj . If eitherP is being in a critical section orPj is not

in YES, thenP does nothing.

An example of implementation of this algorithm is shown in Appendix B.

4.2 Correctness proofs

Now, we show the correctness of the proposed algorithm. We show that the algorithm guarantees

k-mutual exclusion, deadlock free, and starvation free.

Theorem 5 The algorithm guaranteesk-mutual exclusion.

(Proof) Any processP can enter a critical section if and only if there is a quorumQ such thatQ ⊆YES.

If more thank processes are being in critical sections at a time, then by definition ofk-coterie, there

are processesP andPj such that YESs ofP andPj have a processPr in common, a contradiction

since if YES of a processPs includesPr then PERM ofPs contains a REQUEST fromP as its only

element. 2

Theorem 6 The algorithm is deadlock free.

(Proof) Assume that a deadlock happens. Consider a directed graph whose nodes are processes and

links are edges defined as follows: there exists an edge fromP to Pj in the graph if and only ifPj has

the permission of a processPr andP is requesting it, i.e.,P is waiting for its release. Since the system

44CHAPTER 4. A DISTRIBUTEDK-MUTUAL EXCLUSION ALGORITHM USING K-COTERIE

is in a deadlock state, there exists a cycle in the graph. LetP0, P1, ..., Pm−1 be processes that forms a

cycle such that

P0 → P1 → · · · → Pm−1 → P0,

andti be the priority (the timestamp at which a mutual exclusion request was issued) of processPi.

Note that without loss of generality, we can assume that no processPi is in a critical section. (If such

processPi exists, it eventually exits from a critical section and releases the permissions it keeps and

the cycle of the graph is broken in a finite time.)

Each processP preempts its permission having sent to a processPj if a new request whose priority

(defined by timestamp) is higher thanPj ’s. Since a cycle is formed, the permission which is kept by

Pi+1 mod m is not preempted byPi for all i. But ti > ti+1 mod m holds for eachi, we havet0 > t0; a

contradiction. 2

Theorem 7 The algorithm is starvation free.

(Proof) Assume that there exists a processP which starves. In general, more than one process may

starve. Without loss of generality, we assume thatP ’s REQUEST is the one having the earliest (i.e.,

smallest) timestamp. Since the system is deadlock-free by Theorem 6, non-starving processes wishing

to enter their critical sections will eventually enter them and therefore the timestamps they attach to

REQUEST increase. Since REQUESTs are discarded when the corresponding RELEASEs arrive, the

system will eventually reach a configuration such that the timestamp ofP ’s REQUEST is the smallest

one among those existing in the system not only now but also forever.

Let Q be the quorum thatP selects. ThenP sends a REQUEST to all membersPj ∈ Q, and all

Pj will eventually receive the REQUEST and store them in their QUEUEs. As showed above, the

system will eventually reach a configuration such that the timestamp ofP ’s REQUEST is the smallest

one in the system, and thereforeP ’s REQUEST will eventually be moved to the head of QUEUE at

eachPj ∈ Q. ProcessPj returns an OK toP if its PERM is empty. Suppose that PERM contains a

REQUEST from another processPr. ThenPj sends a QUERY toPr, it will eventually reachPr, Pr

will return either a RELINQUISH or a RELEASE, and finally it will eventually reachPj , sincePr ’s

REQUEST has a timestamp larger thanP ’s REQUEST. In either case,Pj returns an OK toP . At P ,

a QUERY never arrive after an OK since the timestamp ofP ’s REQUEST is the smallest even in a

future. Now, a contradiction is derived sinceP will eventually receive OKs from all membersPj ∈ Q

and can enter its critical section. 2

4.3 Message complexity

Let C be thek-coterie used in the algorithm. The number of messages required per mutual exclusion

entrance is3|Q| in the best case, since a process sends REQUEST, receives OK, and sends RELEASE,

to and from all members ofQ, whereQ is the quorum inC selected by the process, as [Mae85]. Since

there proposed an algorithm for constructing ak-coterie whose quorum size isO(
√

n log n) [FYA91],

the message complexity of our algorithm becomeO(
√

n log n), in the best case.

4.4. CONCLUDING REMARKS 45

When a processP fails to gather permission from all members in a quorumQ (i.e., when a WAIT

message arrives), unlike Maekawa’s algorithm, the algorithm selects another quorum and tries to gather

permission from members of another quorum. Therefore, the algorithm is by no means efficient, as

far as the worst case message complexity is concerned;6n messages per critical section entrance is

required, wheren is the number of processes. (For example, the worst case occurs in a processP ,

when for all processPj (6= P), P sends REQUEST toPj , Pj sends QUERY to some processPr, Pr

sends RELINQUISH toPj , Pj sends OK toP , P sends RELEASE toPj , andPj sends OK toPr.)

This is definitely a serious problem, and in order to avoid such situations, we must bound the number

of “retries” so that the total number of processes thatP can send request messages is bounded by a

reasonable functionc(n). It is easy to see that Theorems 5 – 7 hold, even if we bound the number of

retries in terms of bounding functionc(n), provided thatc(n) ≥ c, wherec is the maximum quorum

size ofC, and therefore, the number of messages required per critical section entrance is bounded

from above by6c(n), in the worst case. For instance, if we takec(n) = |Q|, where|Q| is the size of a

quorum, then the message complexity is6|Q|. But by bounding the number of retries, processes may

be required to wait a longer time than our original algorithm, since processes may be able to find a free

quorum by further retries.

4.4 Concluding Remarks

In this chapter, we proposed a distributedk-mutual exclusion algorithm based on the concept ofk-

coterie. The message complexity of our algorithm is3c in the best case, and6n in the worst case,

wherec andn are the maximum quorum size and the number of processes, respectively. The worst

case message complexity,6n, is extremely bad, but by introducing a bounding functionc(n) (≥ c)

which bounds the number of processes to which a process can send a request, the worst case message

complexity can be reduced to6c(n), at the expense of the increase of waiting time for entering a critical

section. An obvious open question is whatc(n) should be used for the purpose here.

In [Bal94b], Baldoni proposed a distributed algorithm for thek-out of-M resources allocation prob-

lem which requires3⌈nk/(k+1) − 1⌉ in the best case and5⌈nk/(k+1) − 1⌉ in the worst case. Manabe

and Aoyagi also proposed the same definition ofk-coterie independently [MA93] and proposed a dis-

tributedk-mutual exclusion algorithm which require5|Q|+3 messages in the worst case and3|Q|+3

in the best case where|Q| is the size of quorum used in their algorithm.

In appendix A, we consider more general case in such a way that a set of resources avaiable to a

process is different from processes. To this end, we introduce a concept of local coterie and propose a

distributed resources allocation algorithm.

As a final remark, we would like to stress that there can be many different metrics to measure

the goodness ofk-mutual exclusion algorithm, besides the message and the time complexities. For

example, from the view of fault tolerance, availability is considered to be a good measure for measuring

the goodness of ak-coterie and investigated in the previous chapter. However, investigation ofk-

mutual exclusion algorithm using other metrics is still remained open, and this is left as a future work.

46CHAPTER 4. A DISTRIBUTEDK-MUTUAL EXCLUSION ALGORITHM USING K-COTERIE

Algorithms Message Complexity
the best case the worst case

Raymond [Ray89a] 2n − k − 1 2(n − 1)
Raynal [Ray91a] 0 3(n − 1)
Srimani and Reddy [SR92] 0 n + k − 1

Baldoni [Bal94b] 3⌈nk/(k+1) − 1⌉ 5⌈nk/(k+1) − 1⌉
Ours 3|Q| 6n

Table 4.1: Message complexities of disributedk-mutual exclusion algorithms

Chapter 5

Experimental Evaluation of the
k-Mutual Exclusion Algorithm

In the previous chapter, ak-mutual exclusion algorithm using ak-coterie is proposed and its message

complexities in the best and worst case are discussed. It is difficult to evaluate the average message

complexity of distributed algorithms by analysis, in general. In this chapter, we evaluate the message

complexity of the average case of the proposed distributedk-mutual exclusion algorithm by computer

simulations. We also evaluate an algorithm by Raymond proposed in [Ray89a] and show the advan-

tages of our algorithm.

5.1 Assumptions and the Simulation Model

In Chapter 2, we assumed that the distributed system assumed in Part I is totally asynchronous. To

evaluate the average behavior of distributed algorithms, such assumption is not appropriate; we assume

that each process shares the same time flow, i.e., the distributed system is synchronous. Note that the

algorithm on the system is designed under the assumption of asynchrony. Because we assume a global

clock, we can define a common time unit; aquantum timeis a unit time used in this chapter.

The model of behavior of each process is as follows: Each process has four states (Normal, Re-
questing, In-CS andExiting) and changes its states according to conditions.

• Normal state — When a process is in this state, it does not do active task, i.e., it is passive. If it

receives a message from another process then it processes the message. But a mutual exclusion

request happens with probabilityp (0 ≤ p ≤ 1) every quantum time. If a mutual exclusion

request happen, the state becomeRequesting state.

• Requesting state — This is the state that a process is executing a procedure for mutual exclusion

request (e.g., sending request messages, waiting permissions, etc.). When a process successfully

enters a critical section, the state becomeIn-CS state.

47

48CHAPTER 5. EXPERIMENTAL EVALUATION OF THEK-MUTUAL EXCLUSION ALGORITHM

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
ppp
ppp
ppp
ppp
ppp
ppp
pppp
ppppp
ppppp
ppp
ppppp
ppppp
pppp
ppp
ppp
ppp
ppp
ppp
ppp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
ppp
ppp
ppp
ppp
ppp
ppp
pppp
ppppp
ppppp
ppp
ppppp
ppppp
pppp
ppp
ppp
ppp
ppp
ppp
ppp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
ppp
ppp
ppp
ppp
ppp
ppp
pppp
pppp
ppppp
ppppppppp

ppp
pppppp
pppp
pppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
ppp
ppp
ppp
ppp
ppp
ppp
pppp
pppp
ppppp
ppppppppp

ppp
pppppp
pppp
pppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
ppp
pp
pp
ppp
pp
pp
pp
ppp
pp
pp
ppp
pp
pp
ppp
pp
pp
ppp
pp
pp
ppp
pp
pp
ppp
pp
pp
ppp
pp
ppp
pp
pp
ppp
pp
ppp
pp
pp
ppp
pp
ppp
pp
pp
ppp
pp
ppp
pp
pp
ppp
pp
ppp
pp
pp
ppp
pp
ppp
pp
ppp
pp
pp
pp
ppp
pp
pp
pp
ppp
pp
pp
pp
ppp
pp
pp
pp
ppp
pp
pp
pp
ppp
pp
pp
ppp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp

pppppppppppppp
ppppppppppppppp

ppppppppppppppp
pppppppppppppppp

pppppppppppppppppp
pppppppppppppppppppppppp

pppppppppppppppppppppppppppppppp
ppp

pp

pp

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp

pp
pppppppppppppppppppppp

pppppppppppppp
ppppppppppppp
ppppppppppp
ppppppppppp
ppppppppp
ppppppppp
ppppppp
pppppppp
ppppppp
pppppppp
ppppppp
pppppppp
pppppppp
p

pppp
pppp
pppp
ppp
pppp
ppp
pppp
ppp
pppp
ppp
pppppppppppppppppppppppp

pppppppppppppppp

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
ppp
pp
ppp
pp
pp
ppp
pp
ppp
pp
pp
ppp
pp
pp
ppp
pp
pp
ppp
ppp
pppp
ppp
ppp
pppp
ppp
ppppp
pppp
pp

ppp
ppppppp
ppppppp
pppppp
ppppppp
pppp

ppp

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp

Exiting state

Requesting state

In-CS state

Normal state

with prob. p

After TCS

Figure 5.1: The behavior of a process

• In-CS state — When a process is in a critical section, it is in this state. After some specified

time TCS is passed after entering a critical section, the process comes out a critical section and

its state becomeExiting state.

• Exiting state — A process is in this state when it is executing a procedure of exiting a critical

section such as returning permissions. After finishing an exiting procedure, the state become

Normal state.

The behavior of a process is illustrated in Figure 5.1

5.2 Outline of the Simulation System

In this section, the simulation system is briefly described. Since the purpose of this chapter is not

discussing a simulation method itself, we describe the outline of the design and implementation of the

system.

The simulation system is executed on several workstations that are interconnected by a local area

network. Processes are executed on different workstations, i.e., when a distributed system which

consists ofn processes is simulated,n workstations are used. (See Figure 5.2.) Therefore, each

process is executed truly in parallel.

5.2. OUTLINE OF THE SIMULATION SYSTEM 49

.........................

.........................
........
........
........
........
........

..

...........
...........
...........
....

..................................
......
......
......
.....

......
......
......
......
.....

...........
......
..............
......
.......
.........

.....
.....
.....
...

.........................

.........................
........
........
........
........
........

..

...........
...........
...........
....

..................................
......
......
......
.....

......
......
......
......
.....

...........
......
..............
......
.......
.........

.....
.....
.....
...

.........................

.........................
........
........
........
........
........

..

...........
...........
...........
....

..................................
......
......
......
.....

......
......
......
......
.....

...........
......
..............
......
.......
.........

.....
.....
.....
...

.........................

.........................
........
.........
........
........
.......

..

...........
............
............
..

..................................
......
......
......
.....

......
......
......
......
.....

...........
.......
..............
......
.........

.......
.....
.....
.....
.

.........................

.........................
........
.........
........
........
.......

..

...........
............
............
..

..................................
......
......
......
.....

......
......
......
......
.....

...........
.......
..............
......
.........

.......
.....
.....
.....
.

Workstation 1
(Executing Process-1)

Workstation 2
(Executing Process-2)

Workstation 3
(Executing Process-3)

Workstation 4
(Executing Process-4)

Workstation 5
(Executing Process-5)

Local Area Network

(Ethernet)

Figure 5.2: The simulation system (in the casen = 5)

As described above, we are assuming that the speed of time flow at each process is the same. To

implement such situation, one of solutions is letting the time flow of a process be the same as (or

proportional to) that of real time. We let the time unit at processes beTQ second. (In our experiment,

one unit of time,TQ is 1 second.) Therefore, the speed of time flow at a process does not depend on

the processing speed of workstations, i.e., the same time flow is guaranteed. Each workstation has real

time clock; therefore implementation is easy. Since 1 second is enough long time for CPUs, the local

computation time at processes is negligibly short.

The message exchange between processes are implemented by inter process communication

facilities[Sun90]. Sincestreamcommunication is synchronous, if two processes try to send message

at the same time then these processes fail into deadlock state; a process waits for message reception

of the other process, and the other process waits for message reception of another one. Therefore,

message passing must be asynchronous. Thus, message exchange between processes is implemented

by using asynchronousdatagramcommunication.

The simulation program is written in programming language C. An executable file is placed at each

workstation and executed by remote execution feature. Program fragments of implementation of the

proposed algorithm and Raymond’s algorithm are shown in Appendix B.

50CHAPTER 5. EXPERIMENTAL EVALUATION OF THEK-MUTUAL EXCLUSION ALGORITHM

5.3 The Distributed k-Mutual Exclusion Algorithm by Kerry
Raymond

In this section, we briefly explain the distributedk-mutual exclusion algorithm proposed by Raymond

[Ray89a].

In her algorithm, sequence number ([Lam78]) is used to avoid deadlock and starvation. A process

X wishing to enter a critical section sends aREQUEST message to the othern− 1 processes, wheren

is the number of processes in the distributed system. When a processY receives aREQUEST message,

it sends aREPLY message unless it is in a critical section or requesting a mutual exclusion with higher

sequence number thanX ’s sequence number. Otherwise,Y defers sending aREPLY message toX .

The processX can enter its critical section if it receivesn − k REPLY messages. Sincen − k =

(n−1)− (k−1), receivingn−k REPLYmessages guarantees that the number of processes which are

not in their critical sections nor are requesting with higher priority is less thank. Thus,X can enter its

critical section.

Since a process enters a critical section if it receives onlyn − k REPLY, it may receiveREPLY

messages when it is in a critical section, after exiting a critical section, or when it is requesting next

mutual exclusion, and so on. The algorithm is designed to ignore such delayed messages. See [Ray89a]

in detail.

It is easy to see that the algorithm require at least2n − k − 1 messages per mutual exclusion

invocation. In the worst case,2(n − 1) messages are necessary. This method is not fault-tolerant

comparing with our algorithm because alive processes are not in operational if arbitraryk processes

are stopped.

5.4 Simulation and Results

Conditions of the experiment are as follows:

• a quantum timeTQ is 1 second,

• TCS, the time that a process is in a critical section, is 1 quantum time,

• ak-coterie used by our algorithm is thek-majority coterie, and

• the experiment is done for 500 quantum time.

Becausek-majority coterie is a coterie whose quorum size is not small, the message complexity of

our algorithm become smaller if we use a coterie whose quorum sizes are smaller. We usek-majority

coterie because it is simple.

The experiment is done for:

• k = 2, n = 5, 8, 11,

• k = 3, n = 7, and

5.4. SIMULATION AND RESULTS 51

• k = 4, n = 9.

For each experiment,p, the probability of mutual exclusion request, is varied from0.01 to 1.0.

Workstations used for the experiment are 7 AV-300’s (Nippon Data General) and 4 DS-7400’s (Nippon

Data General) on which the DG/UX operating system (version 4.32 for AV-300, version 4.02 for DS-

7400) is available.

Under conditions as described above, the total number of messages sent during the experiment and

the number of entrance of critical sections are counted. From these two data, the average number of

messages per mutual exclusion invocation is calculated. Let this value beµ, which is computed by the

following formula.

µ =

∑

1≤i≤n

Mi

∑

1≤i≤n

Ci

,

whereMi is the number of messages that processi sends andCi be the number of times that process

i enters a critical section during the experiment(1 ≤ i ≤ n).1

Results of the experiment are shown in Figure 5.3 – Figure 5.7.

In case thatp is small (for instance, in case ofk = 4, n = 9; see Figure 5.7),µ (the number

of messages which our algorithm requires to enter a critical section) is much smaller than that of

Raymond’s algorithm, as expected. Figure 5.7 shows that it achieves the best case3|Q| = 6 when

p = 0.01. We can see from figures thatµ gradually increases with the increase ofp if p is small

(for instance,p < 0.2 in case ofk = 4, n = 9). But whenp become larger,µ suddenly increases

and whenp comes near to1.0, µ saturates. This observation is described as follows. Whenp is

enough small, mutual exclusion requests do not collide often. In addition to it, even if a process fails

to get permissions from a quorum, the probability that it gets permissions from a next quorum is large.

Therefore, the number of additional messages is rather small. Butp increases, collisions often happen

and the probability that processes choose another coterie but fails to get permissions become large and

preemption also happens often; this cause a sudden increase ofµ.

Consider the case thatk is fixed andn increases (see Figure 5.3, Figure 5.4, and Figure 5.5). In this

case, the increase ofn causes the increase of the probability of collision of mutual exclusion requests.

Therefore,µ increases. Letpxover be a probability that the number of message of our algorithm become

larger than that of Raymond’s. We callpxover cross over probability. In the case ofk = 2, the cross over

probabilities can be found from figures and shown them in Table 5.1 It is interesting that the product

of the number of processes and cross over provability is almost the same. From this observation, the

message complexity of our algorithm depends of the total probability of mutual exclusion requests in

the distributed system. It is easily guessed that the product ofn andpxover depends of thek-coterie

the algorithm uses, however, we use this observation to guess the range ofp such that our algorithm is

more efficient than Raymond’s algorithm in the sense of message complexity.

1For convenience, let process identifier be an integer between1 andn.

52CHAPTER 5. EXPERIMENTAL EVALUATION OF THEK-MUTUAL EXCLUSION ALGORITHM

....................
.....
....

....................
.....
...

...................
.....
......................................

........................
......................
.....
.....
.
...

...................
.....
................................

.....................
...................
.....
...............
..........
..........
..........
..........
......
.....................
.....
.....
..
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
......
....................
.....
...........
......
.......
......
.......
......
.......
......
.......
......
.......
......
.
.....................
.....
.....
..
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....................
.....
...............
..........
...........
...........
........
....................
.....
....

.....
....

...

Figure 1. The Number of Messages

.01 .02 .03 .05 .07 .1 .2 .3 .5 .7 1.
0

5

10

15

20

25

Request Prob. p

Messages/Mutex

Our Algorithm

Raymond’s Algorithm

Figure 5.3: The average number of messages (k = 2, n = 5).

n pxover (cross over probability) n · pxover

5 ≈ 0.9 ≈ 0.45
8 ≈ 0.6 ≈ 0.48
11 ≈ 0.4 ≈ 0.44

Table 5.1: Cross over probabilities fork = 2

5.4. SIMULATION AND RESULTS 53

....................
.....
....

....................
.....
...

...................
.....
.............
.........
.........
.........
........
.........
.........
....
....................
.....
.................

............
.............

.............
............
.............

.

...................
.....
............
.......
.......
.......
.......
.......
.......
.......
.....
...................
.....
...........
......
......
......
......
......
......
......
......
......
......
......
...................
.....
..........
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
....
....................
.....
...........
.......
.......
.......
.......
.......
.......
.......
.......
.......
....
.....................
.....
.....
..
...

....................
.....
..

....................
.....
...

....................
.....
....

..
.....................

.....................
.......... ...

Figure 1. The Number of Messages

.01 .02 .03 .05 .07 .1 .2 .3 .5 .7 1.
0

5

10

15

20

25

Request Prob. p

Messages/Mutex

Our Algorithm

Raymond’s Algorithm

Figure 5.4: The average number of messages (k = 2, n = 8).

54CHAPTER 5. EXPERIMENTAL EVALUATION OF THEK-MUTUAL EXCLUSION ALGORITHM

....................
.....
....

....................
.....
..

...
...................
.....
............
.......
.......
.......
.......
.......
.......
.......
.......
.......
....
....................
.....
.........................

.....................
......................

..........
.....................
.....
.....
..
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
....
...................
.....
..................................

.......................
...................
.....
..

....................
.....
.........
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
...................
.....
..

....................
.....
....
...

....................
.....
...

....................
.....
....

..
..

...........................
... ..

Figure 1. The Number of Messages

.01 .02 .03 .05 .07 .1 .2 .3 .5 .7 1.
0

5

10

15

20

25

30

35

40

45

Request Prob. p

Messages/Mutex

Our Algorithm

Raymond’s Algorithm

Figure 5.5: The average number of messages (k = 2, n = 11).

5.4. SIMULATION AND RESULTS 55

....................
.....
....

....................
.....
..............................

..........................
.........................

.......................
...................
.....
..

....................
.....
.................

............
.............

.............
............
.............

.

...................
.....
.................

...........
............
............
....
...................
.....
............................

........................
.....
...................
.....
...........
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......................
.....
.....
.
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....
...................
.....
..........
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
....................
.....
....
......
......
......
......
......
......
......
......
......
......
......
..
....................
.....
..

....................
.....
....

Figure 1. The Number of Messages

.01 .02 .03 .05 .07 .1 .2 .3 .5 .7 1.
0

5

10

15

20

25

Request Prob. p

Messages/Mutex

Our Algorithm

Raymond’s Algorithm

Figure 5.6: The average number of messages (k = 3, n = 7).

56CHAPTER 5. EXPERIMENTAL EVALUATION OF THEK-MUTUAL EXCLUSION ALGORITHM

....................
.....
....

....................
.....
.................................

.............................
............................

..............
...................
.....
..

....................
.....
....
................

...............
................

................
............
...................
.....
................

...........
...........
...........
........
.....................
.....
.....
..
............
............
...........
............
........
...................
.....
....................

..............
...............

..............
...............

...............
.............
....................
.....
..........
......
......
......
......
......
......
......
......
......
......
......
......
......
......
..
...................
.....
..........
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.
....................
.....
...........
.......
.......
.......
.......
.......
.......
.......
....
....................
.....
....
.......................

........................
.....
....................
.....
....

...
...............

...............
........

Figure 1. The Number of Messages

.01 .02 .03 .05 .07 .1 .2 .3 .5 .7 1.
0

5

10

15

20

25

30

35

Request Prob. p

Messages/Mutex

Our Algorithm

Raymond’s Algorithm

Figure 5.7: The average number of messages (k = 4, n = 9).

5.5. CONCLUDING REMARKS 57

The largerk becomes (for instance, compare casesk = 2, n = 5 andk = 4, n = 9; see figure

5.3 and figure 5.7), the smallerµ becomes ifp is small. This is why that the size of quorum become

smaller if k become larger. Note that thek-majority coterie is used in this experiment. If we use

another coteries whose quorum size is small,µ becomes smaller.

It is shown that our algorithm requires6n messages per mutual exclusion invocation. Even ifk = 2

andp = 1.0, the number of messages per mutual exclusion invocation is approximately3n which is

half of the worst case message complexity6n.

5.5 Concluding Remarks

In this chapter, we evaluated our distributedk-mutual exclusion algorithm which usesk-coteries. As

a drawback of our algorithm, the number of messages become much larger than Raymond’s algorithm

requires. But the probability of mutual exclusion is small andk is large, our algorithm require less

messages. Since we can choose ak-coterie whose quorum size is small, the number of required

messages can be reduced.

The time between the time of mutual exclusion request happen and the time of entrance of critical

section can be considered as a measure of evaluation of mutual exclusion algorithm. But the simulation

model we adopted is not appropriate to evaluate the time because the delivery time of messages are

much smaller that time unit. To evaluate such measure, we need another simulation model and a

simulation system implementing such model. This is left as a future task.

Part II

The Self-Stabilization Approach

59

Chapter 6

The Self-Stabilization Approach for
the Distributed k-Mutual Exclusion

A self-stabilizing system is a system which converges to a legitimate (correct) system state even if the

system starts from an arbitrary system state. The concept of self-stabilizing systems is proposed by

Dijkstra in [Dij74]. Even if a system state changes from a legitimate state to a non-legitimate state

by transient failures (e.g., message omission, restart of process, etc.), the system starts the execution

of a self-stabilizing algorithm from the state and eventually reaches to a legitimate state again. Thus,

self-stabilizing systems are resilient to any transient failures. Since the fault-tolerance of distributed

systems is an important issue, the study of self-stabilizing systems getting more active.1

In this chapter, we summarize computational models used in studies of self-stabilizing systems.

Next, we give a review of previous works for the self-stabilizing mutual exclusion problem which

are related to this dissertation. Finally, we give formal definitions of computational models and the

self-stabilizingk-mutual exclusion problems used in Part 2.

6.1 Computational Models

Usually, distributed algorithms adopt an asynchronous message passing model for information ex-

change between processes. Self-stabilizing algorithms, however, adopt the following models for com-

munications.

• State communication model— A communication model such that every process can know its

neighbors’ states. There is no explicit message sending/receiving steps in the description of an

algorithm based on this model. It is assumed that neighbors’ states can be known without time

delay.

1A term self-stabilizing algorithmformally refers to just an algorithm which has self-stabilizing property executed by pro-
cesses and a termself-stabilizing systemformally refers to a system consisting of a network (processes and communication
links) and a self-stabilizing algorithm executed by a process. In this dissertation, we use terms “self-stabilizing systems” and
“self-stabilizing algorithms” interchangeably.

61

62CHAPTER 6. THE SELF-STABILIZATION APPROACH FOR THE DISTRIBUTEDK-MUTUAL EXCLUSION

• Register communication model— A communication link between processPA andPB is as-

sumed to consist of two registersRAandRB. WhenPA sends a message toPB , PA writes

data into the registerRA. To receive a message fromPA, PB reads the registerRA. To send a

message toPA, PB writes data into the registerRB and thenPA read from it.

• Message communication model— Processes use an asynchronous message passing to ex-

change information. Since it is asynchronous, the delay for message delivery is finite but it

cannot be predicted.

Since distributed systems consist of more than one processes, a scheduling of executions of pro-

cesses is one of an important issues in designing distributed algorithms. The following models are

proposed as schedulers (adversaries).

• Central daemon (or, c-daemon)— A scheduler such that only one process is chosen to be

executed at each step. A process can read states of all its neighbor processes and updates its

state in one step.

• Distributed daemon (or, c-daemon)— A scheduler such that arbitrary number of processes

are chosen to be executed at each step. A process can read states of all its neighbor process and

updates its state in one step.

• Read/write daemon (or, r/w-daemon)— This model can be adopted if a communication model

is the register communication model. At each step, only one process is chosen to be executed

and each process can take an action such that an internal transition followed by reading from or

writing to a register.

Many distributed algorithms assume the existence of unique process identifier. The following mod-

els related to process identifier have been considered.

• Uniform — There is no process identifier and every process has the same algorithm. Thus, all

processes are completely identical.

• Semi-uniform — All process except one or several (constant) number of processes are identical.

Special process(es) has different algorithm from other processes.

• Unique identifier — Every process has a unique process identifier.

6.2 Previous Works

In this section, we review the previous works for the self-stabilizing mutual exclusion problem.

The first paper in which self-stabilization is proposed is [Dij74] by Dijkstra in 1974. He proposed

a self-stabilizing algorithm on bidirectional rings which solves the mutual exclusion problem. In his

paper, he introduced daemons as models of scheduler and his algorithm based on state communica-

tion, c-daemon, and semi-uniform model. In a ring network, he assumed a special process called the

6.2. PREVIOUS WORKS 63

“bottom” process. The idea of the algorithm is as follows. Depending on a relation with neighbors’

states, a process is said to have an token if a predicate holds. By the execution of a process, a token

circulates along a ring. If a token arrives at a bottom process, the moving direction of a token is re-

flected by the bottom process. If two tokens collide, one token disappears and the other token remains.

Thus, if there are more than one tokens on the ring then the number of tokens decrease by collisions

of tokens and eventually the number of tokens become one. Since the number of tokens is at least one

by the construction of the algorithm, the number of tokens in a ring become one which is a legitimate

configuration.2 He showed algorithms which requireK states (whereK > n andn is the number of

processes), 4 states, and 3 states.

It is desirable that there is no exceptional process in a distributed system. A distributed system is

uniform if every process has the same algorithm and no process identifier. Dijkstra showed that there

is no uniform deterministic self-stabilizing mutual exclusion algorithm on a ring network whose size

is composite[Dij82]. (The same result can be seen in [BP89].) Burns and Pachl proposed a uniform

deterministic self-stabilizing mutual exclusion algorithm on unidirectional ring networks whose size is

prime assuming state communication model under c-daemon. The proposed algorithm requireO(n2)

states for each process, and then, they showed a method of reducing the number of states. Finally, they

obtained an algorithm requiring approximatelyn2/ lnn states. It is shown by Ceger that a determinis-

tic self-stabilizing mutual exclusion algorithm assuming state communication model under c-daemon

require at leastn−1 state [Bur94]. Burns and Pachl pointed out that there is a gap between lower bound

and upper bound of the number of states and this is still an open problem. Recently, Huang proposed a

uniform deterministic self-stabilizing mutual exclusion algorithm on bidirectional rings [Hua93]. His

algorithm is a composition of a leader election algorithm and Dijkstra’s self-stabilizing mutual exclu-

sion algorithm. Since the ring is uniform, a distinguished process assumed by Dijkstra’s algorithm is

elected by a leader election algorithm. The number of states that Huang’s algorithm requires is3n.

Since determinism and uniformity are strong requirements for self-stabilizing systems, self-

stabilizing systems with relaxed requirements has been proposed. In addition, not only ring networks

but general networks are also considered in other researches.

Israeli and Jalfon proposed a self-stabilizing mutual exclusion algorithm on general networks by

random walk of token [IJ90]. A process which have a token can be considered as having a privilege to

enter a critical section and it sends a token to a neighbor process which is randomly chosen. A token is

eliminated when two tokens collide. Even if there are more than one tokens in a network, it is expected

that they collide with high probability. They showed that (1) the upper bound of the expected steps that

the number of tokens converges to one, and (2) the (exact) expected steps that the number of tokens

converges to one in the case that the network is a bidirectional ring.

Dolev, Israeli and Moran proposed a semi-uniform self-stabilizing mutual exclusion algorithm on

general networks [DIM90, DIM93]. They assumed a special process in networks. Their algorithm

is dynamic in the sense that it tolerates changes of networks (addition and/or removal of processes

and links) during execution of the algorithm provided that a special process never removed. Their

2A system state (tuple of states of all processes) is called aconfiguration. Formal definition is given in the next section.

64CHAPTER 6. THE SELF-STABILIZATION APPROACH FOR THE DISTRIBUTEDK-MUTUAL EXCLUSION

algorithm is composed of two self-stabilizing algorithms: a self-stabilizing spanning tree algorithm

and a self-stabilization mutual exclusion algorithm based on random walk of a token on a spanning

tree.

Nishikawa, Masuzawa and Tokura proposed a uniform self-stabilizing probabilistic leader election

algorithm on tree networks and complete networks [NMT92]. It is observed that the self-stabilizing

mutual exclusion cannot be solved deterministically on symmetry networks [Dij74]. The proposed

algorithm by Nishikawa et al. uses randomization to break a symmetry. They showed that a compo-

sition of their uniform self-stabilizing leader election algorithm and semi-uniform mutual exclusion

algorithm proposed in [DIM90] yields a uniform mutual exclusion algorithm.

Herman proposed a uniform self-stabilizing probabilistic mutual exclusion algorithm on ring net-

work whose size is odd in [Her90]. He assumed that every process is executed synchronously. Each

process has only one bit as a state, i.e., the number of states is two.

Not only using randomization to provide self-stabilizing property, a special network topology is

proposed. For instance, Ghosh proposed a deterministic self-stabilizing mutual exclusion algorithm

and on a special network topology in [Gho91].

6.3 Preliminaries

In this section, we give formal definitions of concepts and terms used in the self-stabilization approach.

6.3.1 The process and network model

A unidirectional uniform ring systemis a triple,R = (n, δ, Q) wheren is the number of processes in

the system,δ is a transition algorithm,Q is a finite set of state of process. The processes are arranged

on a ring, i.e., processesP0, P1, ..., Pn−1 are arranged in a clockwise manner. (Right is clockwise

direction and left is counterclockwise direction.) LetQi be the state set of processPi. Note that

Qi = Qj for all i, j, but we use this notation for the simplicity of explanation. The systems is called

uniformsince theδ andQ are the same for every process.

A configurationof R is ann-tuple of a state of processes; a state of processPi is qi ∈ Qi then

a configuration of the system isγ = (q0, q1, ..., qn−1). Let Γ be the set of all configurations, i.e.,

Γ = Q0 × Q1 × · · · × Qn−1. The transition algorithmδ of a process is given by a set ofguarded

commands:

IF 〈guard1〉 THEN 〈command1〉
IF 〈guard2〉 THEN 〈command2〉

...
IF 〈guardm〉 THEN 〈commandm〉

Guards are predicatesgj(qi, qi−1) and commands are assignment statementsqi := fj(qi, qi−1). A

uniform ring system is called arandomized uniform ring systemif random bit generator is used in a

command. To describe randomized behavior of processes when we write algorithms, we assume that a

6.3. PRELIMINARIES 65

random bit generator is provided as a primitive function. Especially, the uniform ring system is called

a deterministic uniform ring systemif random bit generator is not used in any commands.

A bidirectional uniform ring systemis defined similarly. Guards are predicatesgj(qi, qi−1, qi+1)

and commands are assignment statementsqi := fj(qi, qi−1, qi+1).

6.3.2 Scheduling of processes

It is said thatPi has aprivilegeat a configurationγ if and only if gj(qi, qi−1) for some1 ≤ j ≤ m. Pi

can execute (change state) only when it has a privilege. In general, there exists more than one process

which have privilege. In this dissertation, we consider the following types of scheduler in order to

choose processes to be executed:

• c-daemon (central daemon) — the scheduler chooses any process among privileged processes

and let the process execute.

• c-dragon (central dragon) — the scheduler chooses a process among privileged processes with

uniform probability and let the process execute.

A scheduler chooses a process which has a privilege and executes a command whose guard is true.

Even if more than one one guard is true, only one command is chosen and be executed. After the

execution, assume that the state ofPi is changed toq. Then, the configuration becomes

γ′ = (q0, q1, ..., qi−1, q, qi+1, ..., qm)

This relation between configurations is denoted byγ → γ′. The transitive closure of the relation→
is denoted by→∗. To explicitly describe that the transition is made by processP , we write

P→. A

computationor a transition sequence∆ starting fromγ0 ∈ Γ is an infinite sequence of configuration

γ0, γ1, ..., whereγj → γj+1 for all j ≥ 0.

6.3.3 The self-stabilizingk-mutual exclusion problem

Let Λ be a set of configurations of a uniform ring systemR = (n, δ, Q). A deterministic uniform

ring systemR is adeterministic self-stabilizing mutual exclusion systemfor Λ if and only if all of the

following conditions hold:

• No Deadlock:For any configurationγ ∈ Γ, there exists at least oneγ′ ∈ Γ such thatγ → γ′.

• Closure: For anyγ ∈ Λ andλ′ ∈ Γ, γ → γ′ implies thatγ′ ∈ Λ.

• No Livelock: For anyγ0 ∈ Γ and any (infinite) computation∆ = γ0, γ1, ..., there exists aj

such thatγj ∈ Λ.

• Fairness:For anyλ0 ∈ Λ and any (infinite) transition sequence∆ = λ0, λ1, ... and any process

Pi (0 ≤ i < n), there exists infinite transitions made byPi.

66CHAPTER 6. THE SELF-STABILIZATION APPROACH FOR THE DISTRIBUTEDK-MUTUAL EXCLUSION

• k-mutual Exclusion: For each configurationλ ∈ Λ, the number of processes which have a

privilege atλ is exactlyk.

The set of configurationsΛ is called a set oflegitimate configurationssince the system takes a

configuration inΛ when the system is stabilized.

A randomized uniform ring systemR is a randomized self-stabilizing mutual exclusion systemfor

Λ if and only if all of the following conditions hold:

• No Deadlock: (same as deterministic version)

• Closure: (same as deterministic version)

• No Livelock: For anyγ0 ∈ Γ, let D be the set of all possible (infinite) computation∆i =

γi
0, γ

i
1, ... anddi be the smallest index of configuration such thatγi

di
∈ Λ for each∆i. Then, the

expected value ofdi for each∆i ∈ D is finite.

• Fairness: (same as deterministic version)

• Mutual Exclusion: (same as deterministic version)

When a ring systemR = (n, δ, Q) is self-stabilizing mutual exclusion systems forΛ, the systemS

is denoted by four tupleS = (n, δ, Q, Λ).

We define a self-stabilizingk-mutual exclusion problem with additional requirement. LetΠ(λ) be a

set of processes which have a privilege at a configurationλ andV be a any set ofk processes.Type-2

self-stabilizingk-mutual exclusion problemis a problem such that there exists a computation starting

from any legitimate configurationsλ ∈ Λ which reaches a configurationλ′, whereΠ(λ′) = V . Type-1

self-stabilizingk-mutual exclusion problemis a problem without this requirement. Note that type-1

and type-2 are the same whenk = 1.

Type-2 problem requires that there must exist a computation which reaches any arrangement of

privilege from any legitimate configuration. As we will show, there is no algorithm which solves

type-2 problem on unidirectional rings.

Chapter 7

Self-Stabilizing Mutual Exclusion
Algorithms

7.1 Self-Stabilizingk-Mutual Exclusion Algorithms

In this section, we propose (deterministic) self-stabilizingk-mutual exclusion algorithms under a c-

daemon on unidirectional and bidirectional ring networks. The solution is not trivial by the following

reasons. (1) If the number of tokens is less thank, the number of tokens must be increased. This

implies that token collision scheme cannot be applied simply. (2) When the number of tokens is exactly

k, collision of tokens must be avoided. (3) Otherwise, the number of tokens must be decreased.

Since it is easy to show that there is no self-stabilizingk-mutual exclusion algorithm under a c-

daemon, we assume a fair schedule of a c-daemon.1 The proposed algorithms are based on the

algorithm by Burns and Pachl’s uniform deterministic self-stabilizing 1-mutual exclusion algorithm

[BP89]. First, we cite their algorithm and explain it because it is necessary in the proofs of our algo-

rithms.

7.1.1 Burns and Pachl’s Algorithm

The self-stabilizingk-mutual exclusion algorithms proposed in 7.1.2 and 7.1.3 is based on the self-

stabilizing mutual exclusion algorithm proposed by Burns and Pachl in [BP89]. Before describing our

k-mutual exclusion algorithms, we cite Burns and Pachl’s algorithmS0 = (n, δ0, Q0, Λ0) first. In the

rest of this section, we call Burns and Pachl’s algorithm asBP.

Let n ≥ 5 be the prime number of processes. A set of states isQ0 and a stateqi ∈ Q0 of each

processPi is a tupleli.ti, whereli ∈ {0, 1, ..., n− 2} andti ∈ {0} ∪ {2, 3, ..., n − 2}. The first field

li is calledlabeland the second fieldsti is calledtag.

For the simplicity of description of the algorithm, we define the following predicates:

RA(i) ≡ (li 6= li−1 + 1) ∧ (li 6= 0 ∨ ti−1 = 0 ∨ ti−1 6= li − li−1 ∨ ti−1 < ti),

1A schedule isfair if a process which have a privilege is executed within a finite steps.

67

68 CHAPTER 7. SELF-STABILIZING MUTUAL EXCLUSION ALGORITHMS

RB(i) ≡ (li = li−1 + 1) ∧ (ti−1 6= ti) ∧ (li 6= 0)

A set of guarded commandsδ0 of S0 is defined as follows.

Rule BP-A:

IF RA(i) THEN li.ti := (li−1 + 1).(li − li−1).

Rule BP-B:

IF RB(i) THEN li.ti := li.ti−1.

Arithmetic operations on labels and tags are computed modulon − 1.

Legitimate configurations are configurations taking the following forms.

..., l − 2.0, l − 1.0, l.0, l.0, l + 1.0, l + 2.0, ...

wherel is any label and underlined state is a state of which a process that has a privilege.

After execution of the privileged process, the configuration become the following configuration.

..., l − 2.0, l − 1.0, l.0, l + 1.0, l + 1.0, l + 2.0, ...

Note that the privilege is moved to the right process.

The next lemma holds forS0 [BP89].

Lemma 1 The no deadlock property holds, i.e., there exists a processP which has a privilege by Rule

BP-A or Rule BP-B at any configuration. 2

Now, we define several terms used in this algorithm. (These terms are also used in the rest of this

section.) Letl1.t1, l2.t2 be states of two consecutive processesP1, P2 in clockwise oder on a ring

respectively. We say thatP2 has agap if and only if l2 6= l1 + 1(mod n− 1) is true and itsgap sizeis

defined byl2 − l1. A segmentis a maximal sequence of processess = (Pi, Pi+1, ..., Pj) which does

not include a process having a gap andPi (Pj) is called thehead(tail) process ofs. For a segment

s = (Pi, Pi+1, ..., Pj), we say that the segment iswell formedif and only if tx = lj+1−lj(mod n−1)

holds for everyx (i ≤ x ≤ j).

We describe the way of stabilization of the BP algorithm briefly. At a legitimate configuration, the

number of segments is 1 and the segment is well formed. For any initial configuration, the number

of segments is at mostn at the configuration. The application of Rule BP-A and Rule BP-B does not

increase the number of segments. Rule BP-A works as a movement of a privilege and decreasing the

number of segments if there are more than one. Rule BP-B works to make a segment well formed.

Even if a c-daemon try to keep the number of segments, every segments become well formed and there

is at least one process which cannot make a move. Thus, the number of segments decreases within a

finite steps until it become one.

7.1. SELF-STABILIZINGK-MUTUAL EXCLUSION ALGORITHMS 69

7.1.2 Unidirectional Uniform Rings

Now, we show a type-1 self-stabilizingk-mutual exclusion algorithm on unidirectional ringS1 =

(n, δ1, Q1, Λ1). We assume thatn ≥ 5 is prime.

Algorithm SSUUR(k)

Let a state set beQ1 = {l.t}, l ∈ {0, 1, ..., n − 2}, t ∈ {0} ∪ {2, 3, ..., n − 2}. Each fieldl, t are

calledlabel andtag respectively. A set of guarded commands is as follows. Note that a set of guarded

commands is given to eachPi but it is identical for all processes.

First, we define the following predicates.

RA(i) ≡ (li 6= li−1 + 1) ∧ (li 6= 0 ∨ ti−1 = 0 ∨ ti−1 6= li − li−1 ∨ ti−1 < ti),

RB(i) ≡ (li = li−1 + 1) ∧ (ti−1 6= ti) ∧ (li 6= 0)

Rule Uni-A:

IF RA(i) THEN

li.ti := (li−1 + 1).(li − li−1).

Rule Uni-B:

IF RB(i) THEN

li.ti := li.ti−1.

Rule Uni-C:

IF (n − k ≤ li ≤ n − 2) ∧ ¬(RA(i) ∨ RB(i)) THEN

do nothing.

The arithmetic operation for labels and tags are computed modulon − 1.

A set of legitimate configurations is a set of following configurations.

..., l − 2.0, l − 1.0, l.0, l.0, l + 1.0, l + 2.0, ...,

for any labell. 2

Now, the correctness of this algorithm is presented.

Lemma 2 At any legitimate configuration, there are exactlyk processes have privileges, i.e.,k-mutual

exclusion property holds. In addition, closure property also holds.

(Proof) Letλ ∈ Λ1 be any legitimate configuration, which can be expressed as

..., l − 2.0, l − 1.0, l.0, l.0, l + 1.0, l + 2.0, ...

for somel. Let P0 be a process which has a privilege atλ by Rule Uni-A andl0.t0 be the state ofP0.

(Note thatt0 = 0.)

70 CHAPTER 7. SELF-STABILIZING MUTUAL EXCLUSION ALGORITHMS

• If l0 ∈ {n − k, ..., n − 2}:

For eachl ∈ {n−k, ..., l0−1, l0 +1, ..., n−2}, There exists exactly onePi such thatli = l and

it has a privilege by Rule Uni-C. There exists two processes such thatli = l0 holds. One of them

has a privilege by Rule Uni-C and another has a privilege by Rule Uni-A. Thus, the number of

processes having a privilege by Rule Uni-C isk − 1, and none of these isP0. Thus, exactlyk

processes have a privilege.

Since a configuration never change by executions of Rule Uni-C, we consider only executions

of Rule Uni-A byP0. Let γ′ be the next configuration.γ′ takes a form of

..., l − 2.0, l − 1.0, l.0, l + 1.0, l + 1.0, l + 2.0, ...

which is a legitimate configuration. Therefore, closure property holds.

• If l0 6∈ {n − k, ..., n − 2}:

For eachl ∈ {n − k, ..., n − 2}, there exists only onePi such thatli = l. Thus, the number of

processes which have a privilege by Rule Uni-C isk − 1 and none of them isP0. Thus, exactly

k processes have a privilege. The closure property can be shown by the same proof given above.

2

Lemma 3 The fairness property holds.

(Proof) By the definition ofS1, there exists exactly one processP which has a privilege by Rule Uni-A

at any configurationλ ∈ Λ1. By the assumption of the fairness execution of processes by a c-daemon,

P is executed within a finite steps. Then, a process which has a privilege by Rule Uni-A moves to the

right process. 2

Lemma 4 The no deadlock property holds.

(Proof) Since each guard of Rule Uni-A and Rule Uni-B is the same as that of Rule BP-A and Rule

BP-B by Burns and Pachl[BP89]. Thus, by the same proof for no deadlock property shown in [BP89],

the no deadlock property of proposed algorithm is shown. 2

Now, we have the following theorem.

Theorem 8 S1 is a type-1 self-stabilizingk-mutual exclusion system.

(Proof) Since Rule Uni-C never change the configuration, we do not consider executions of Rule Uni-C

without loss of generality. (Note that we assume a fair c-daemon.) There is no configuration such that

every privilege is a privilege by Rule Uni-C and there exists at least one process which have a privilege

by Rule Uni-A by the discussion in Lemma 4. Thus, for any configurationγ0, the configuration reaches

γ1 such that

..., l − 2.0, l − 1.0, l.0, l.0, l + 1.0, l + 2.0, ...

7.1. SELF-STABILIZINGK-MUTUAL EXCLUSION ALGORITHMS 71

by the same proof given in [BP89]. This is a legitimate configuration. 2

Next theorem claims that there exists no algorithm for the type-2k-mutual exclusion problem on

unidirectional rings.

Theorem 9 For eachn ≥ 6 andk, (3 ≤ k ≤ n − 3), there exists no type-2 self-stabilizingk-mutual

exclusion algorithm on unidirectional ring of sizen.

(Proof) Assume that there exists a type-2 self-stabilizingk-mutual exclusion algorithm on a unidirec-

tional ring. LetΛ be a set of legitimate configurations andλ0 ∈ Λ. Then, there exists a legitimate

configurationλ1 ∈ Λ and a computationλ0 →∗ λ1 such that consecutivek processes have a privilege

atλ1.

Without loss of generality, processesP0, P1, ..., Pk−1 have a privilege atλ1. It is easy to see that

locations of privileges never change by executions ofPi (0 ≤ i ≤ k − 2). (Otherwise, the number

of privileges become less thank.) Thus, the movement of privilege happens only whenPk−1 loses

a privilege after several executions ofPk−1. Then,Pk has a privilege next. By the same way,Pk

loses a privilege and thenPk+1 has a privilege. This is repeated untilPn−1 has a privilege. Note

that any executions ofPi (0 ≤ i ≤ k − 2) do not cause a movement of privileges, since the ring is

unidirectional.

Now consider the following two cases.

• If k ≤ ⌊n/2⌋:
A configuration such that any two privileges amongk privileges are not adjoining each other is

not reachable.

• If k > ⌊n/2⌋:
A configuration such that any processes which do not have a privilege are not adjoining each

other is not reachable. 2

Corollary 2 There is no self-stabilizingk-mutual exclusion algorithm under a c-daemon fork ≥ 2

but there exists algorithm under a fair c-daemon.

(Proof) Assume that there exists an algorithm under a (non-fair) c-daemon. LetP0, P1, ..., Pn−1 be

a processes in clockwise on a ring. Consider a legitimate configuration at which processP0 has a

privilege. ExecuteP0 until it loses a privilege. It does lose a privilege because the fairness property is

not satisfied (consider a schedule executing onlyP0). A privilege moves to its right processP1. Do

the same thing forP1. Then the privilege moves to the right. Repeat this procedure until a privilege

does not move any more. (A privilege do not move at some processPi within a finite steps; otherwise

privileges collide and the number of privileges decrease.) Then, execute onlyPi. Other process do not

have a chance enjoying privilege; the fairness property is not satisfied. 2

72 CHAPTER 7. SELF-STABILIZING MUTUAL EXCLUSION ALGORITHMS

Note that forn ≥ 5 is prime,S1 is a self-stabilizing system for the type-2 problem ifk = 2, n −
2, n − 1,

7.1.3 Bidirectional Uniform Rings

We propose a type-2 self-stabilizingk-mutual exclusion algorithmS2 on bidirectional rings for size

n ≥ 5 is prime. The proposed algorithm is based on the following idea. Consider a bidirectional ring

consistingk tracks(rings). Each process execute the 1-mutual exclusion algorithm for unidirectional

rings proposed by Burns and Pachl[BP89] in parallel for each track. A process has a privilege when it

has a privilege at least one track in the sense of Burns and Pachl’s algorithm. If each track are executed

infinitely often, each track stabilizes and the number of privileges become one for each track. Then,

the number of privilege become at mostk in the ring. To satisfy ak-mutual exclusion property, the

number of privileges must be exactlyk, which implies that no process has a privilege at most one track.

The definition ofS2 = (n, δ2, Q2, Λ2) is shown below.

Algorithm SSBUR(k)

Let the state set beQ2 = {(l1j .t1j , l2j .t2j , ..., lkj .tkj) | lij ∈ {0, 1, ..., n−2}, tij ∈ {0}∪{2, 3, ..., n−1}},

andΓ2 be a set of all configuration.

A set of guarded commandsδ2 is defined as follows. Let a configuration be(q0, q1, ..., qn−1),

qj = (l1j .t
1
j , l

2
j .t

2
j , ..., l

k
j .tkj). To make the description simple, we define the following functions and

predicates:

RA(i, j) ≡ (lij 6= lij−1 + 1) ∧ (lij 6= 0 ∨ tij−1 = 0 ∨ tij−1 6= lij − lij−1 ∨ tij−1 < tij),

RB(i, j) ≡ (lij = lij−1 + 1) ∧ (tij−1 6= tij) ∧ (lij 6= 0),

Sp(j) ≡ {i | (1 ≤ i ≤ k) ∧ (lij = lij−1)},
πj ≡ |Sp(j)|, and

RS(j) ≡
∏

1≤i≤k

{((lij = lij−1 + 1) ∧ (lij+1 = lij)) ∨ ((lij = lij−1) ∧ (lij+1 = lij + 1))

∨((lij = lij−1 + 1) ∧ (lij+1 = lij + 1))}
∧ ∀i, j′(1 ≤ i ≤ k, j − 1 ≤ j′ ≤ j + 1)[tij′ = 0]

∧ πj ≥ 1.

A transition rulesδj
2 for a processPj is as follows. (Though process identifiersj−1, j, j+1 appears,

δj
2 = δj′

2 for anyj, j′.)

Rule Bi-A:

IF ¬RS(j) ∧ ∃i(1 ≤ i ≤ k)[RA(i, j)] THEN

For eachi′ such thatRA(i′, j) is true:

li
′

j .ti
′

j := (li
′

j−1 + 1).(ti
′

j − ti
′

j−1),

7.1. SELF-STABILIZINGK-MUTUAL EXCLUSION ALGORITHMS 73

For eachi′ such thatRB(i′, j) is true:

li
′

j .ti
′

j := li
′

j .ti
′

j−1.

Rule Bi-B:

IF RS(j) ∧ (πj = 1) ∧ (πj+1 ≥ 1) THEN

do nothing.

Rule Bi-C:

IF RS(j) ∧ (πj = 1) ∧ (πj+1 = 0) THEN

For i′ = minSp(j):

li
′

j .ti
′

j := (li
′

j−1 + 1).(ti
′

j − ti
′

j−1).

Rule Bi-D:

IF RS(j) ∧ (πj ≥ 2) ∧ (πj+1 ≥ πj − 1) THEN

do nothing.

Rule Bi-E:

IF RS(j) ∧ (πj ≥ 2) ∧ (πj+1 < πj − 1) THEN

For i′ = minSp(j):

li
′

j .ti
′

j := (li
′

j−1 + 1).(ti
′

j − ti
′

j−1).

Rule Bi-F:

IF ∃i(1 ≤ i ≤ k)[RB(i, j)] THEN

For eachi′ such thatRB(i′, j) is true:

li
′

j .ti
′

j := li
′

j .ti
′

j−1.

A legitimate configurationλ ∈ Λ2 is as follows: (1) Each track is in a legitimate configuration in

the sense of BP, (2) each processPj has a privilege of BP at most one track. A set of legitimate con-

figurationsΛ2 is the set of the following configurations. Letγ = (q0, q1, ..., qn−1) be a configuration

such thatqj = (l1j .t
1
j , l

2
j .t

2
j , ..., l

k
j .tkj). Then,γ ∈ Λ2 if and only if the next condition holds.

• ∀i, j[tij = 0],

• For eachi, (li0, l
i
1, ..., l

i
n−1) is a cyclic shift of(li, li, li + 1, li + 2, ..., li + n− 3, li + n− 2) for

someli. (Arithmetic operation is computed modulon − 1.)

• For eachj, |{i | lij = lij−1}| ≤ 1. 2

Now, the correctness proof ofS2 is presented below.

Lemma 5 The number of processes which have a privilege is exactlyk at any legitimate configuration.

(Proof) It is clear by the definition of the set of legitimate configurations. 2

74 CHAPTER 7. SELF-STABILIZING MUTUAL EXCLUSION ALGORITHMS

Lemma 6 The closure property holds.

(Proof) Letλ ∈ Λ2 be any legitimate configuration. The guards of Rule Bi-B or Rule Bi-C are true at

processes which have a privilege atλ . (If the right process has a privilege then it has a privilege by

Rule Bi-B. Otherwise it has a privilege by Rule Bi-C.) Assume that a processPj which has a privilege.

• The case thatPj had a privilege by Rule Bi-B:

The next configuration is the same asλ.

• The case thatPj had a privilege by Rule Bi-C:

After application of Rule Bi-C,Pj does not have a privilege andPj+1 has a privilege at a track

in the sense of BP. This configuration is inΛ2. 2

Lemma 7 The fairness property holds.

(Proof) Let λ ∈ Λ2 be any legitimate configuration. At a configurationλ, there exists processes

Pa, Pb, ... such that their right processes do not have a privilege sincek < n. These processes

Pa, Pb, ... have a privilege by Rule Bi-C. (Other processes which have a privilege is by Rule Bi-C.)

The application of Rule Bi-B does not change the configuration. By the fairness assumption of a

c-daemon, a processP amongPa, Pb, ... is executed within a finite steps. After execution of process

P , it loses a privilege and the right process ofP has a privilege instead. Thus, the movement of

privilege within a finite steps is guaranteed by the fairness of a c-daemon. Therefore, every process

has a privilege infinitely often in a infinite computation. Note that fairness property does not hold

without fairness of a c-daemon. 2

Lemma 8 The no deadlock property holds.

(Proof) Assume that a configurationγ ∈ Γ2 is a deadlock configuration, i.e., guards of rules are false

at every process. Since the number of process is prime, the same proof of no deadlock property of

Burns and Pachl’s algorithm (Lemma 4.3 in [BP89]) can be applied to this lemma. Thus, at least one

of guards of Rule BP-A or that of Rule BP-B is true at some process. If the guard part of Rule BP-B is

true at some tracks, a privilege by Rule Bi-F exists; a contradiction. Therefore,∀i∃j[RA(i, j)] is true.

Let i0, j0 be integers such thatRA(i0, j0) is true.

• WhenRS(j0) is true:

Since∨r∈{B, C, D, E}(Guard of Rule Bi-r) = RS(j0), one of guards of Rule Bi-B, Bi-C, Bi-D

and Bi-E is true; a contradiction.

• When¬RS(j0) is true:

The guards of Rule Bi-A is true; a contradiction. 2

Next lemma is shown in [LS92].

7.1. SELF-STABILIZINGK-MUTUAL EXCLUSION ALGORITHMS 75

Lemma 9 Let mi be the number of gaps of thei-th track andgi (i = 0, 1, ...,m − 1) be gaps of the

i-th track. Then,Σm−1
j=0 gj = m − 1(mod n − 1).

Lemma 10 There is no configurations such that all privileges are privileges by Rule Bi-B and/or Rule

Bi-D.

(Proof) Assume that there is a configurationγ at which all privileges are privileges by Rule Bi-B

and/or Bi-D. Since algorithm BP is livelock free, there existsj such that the guards of Rule BP-A

(= RA(i, j)) or that of Rule BP-B (= RB(i, j)) is true for each tracki. If we assume that the guard

of BP-B is true for somei, j, then the guard of Bi-F become true and it is a contradiction. Thus, the

guard of BP-B is not true at each track, i.e.,¬RB(i, j) is true for alli, j.

• The case that the guard of Bi-B is true atPj :

SinceRS(j) is true, there existsi such thatlij+1 = lij is true andtij+1 = tij = 0 is true. Thus

we haveRA(i, j + 1) is true. If we assume that¬RS(j + 1) is true then the guard of Rule Bi-A

is true; a contradiction. Thus,RS(j + 1) is true, which implies that one of guards of Rule Bi-B,

Bi-C, Bi-D and Bi-E is true. (Note that logical-OR of guards of Rule Bi-B, Bi-C, Bi-D and Bi-E

is RS(j).) Therefore,Pj+1 has a privilege by Rule Bi-B or Rule Bi-D by assumption.

• The case that the guard of Rule Bi-D is true atPj :

There existsi such thatlij+1 = lij is true sinceπj ≥ 1, andRA(i, j + 1) is true sincetij+1 =

tij = 0. By the same reason discussed above,Pj+1 has a privilege by Rule Bi-B or Rule Bi-D.

By above discussion, every process has a privilege by Rule Bi-B or Rule Bi-D. Thus,∀i, j[RS(j) ∧
¬RB(i, j)] is true. Since every gap size is 0 for each track, the sum of all gap sizes is 0 for eack track.

By the definition ofRS(j), each track has at mostn − 1 segments. By this fact and by lemma 9, the

number of segments at each track is 1. Thus, we haveΣjπj ≤ k. On the other hand, ifRS(j) is true

thenπj ≥ 1 is true, which impliesΣjπj ≥ n; a contradiction. 2

The next lemma shows that if each track is legitimate then the entire ring will reach a legitimate

configuration within a finite steps.

Lemma 11 For eachi (1 ≤ i ≤ k), assume that thei-th track is in a legitimate configuration in the

sense of BP at a configurationγ0. Then, for any computation∆ starting fromγ0 such that∆ = γ0 →
γ1 → · · ·, there exists a finite integerτ such thatγτ ∈ Λ2.

(Proof) The behavior ofS2 when each track is legitimate in the sense of BP is the same as the behavior

of the following (self-stabilizing) systemS3. The systemS3 consists of a bidirectional ring of size

n and its algorithm is described below. Each processPj takes the following state:πj (0 ≤ πj ≤
k, Σn−1

j=0 πj = k < n).2 The algorithm ofS3 works to makeπj be at most one at any configuration.
2Although the network ofS3 is a bidirectional ring, the next state of a process is determined by its state and the state of its

right process. In a strict sense, definition ofS3 does not match the definition of the self-stabilizing system defined in Chapter 6.
The (another) definition of self-stabilization forS4 is omitted because it can be defined similarly.

76 CHAPTER 7. SELF-STABILIZING MUTUAL EXCLUSION ALGORITHMS

The legitimate configurations are configurations such that0 ≤ πj ≤ 1 for eachj. We say thatPi has

a tokenif and only if πi ≥ 1 andπi is calledthe number of tokensof Pi. The algorithm (transition

relation) ofS3 is as follows.

Rule Bi-B’:

IF (πj = 1) ∧ (πj+1 ≥ 1) THEN

do nothing.

Rule Bi-C’:

IF (πj = 1) ∧ (πj+1 = 0) THEN

πj := 0, πj+1 := 1.

Rule Bi-D’:

IF (πj ≥ 2) ∧ (πj+1 ≥ πj − 1) THEN

do nothing.

Rule Bi-E’:

IF (πj ≥ 2) ∧ (πj+1 < πj − 1) THEN

πj := πj − 1, πj+1 := πj+1 + 1.

It is easy to see thatΣn−1
j=0 πj = k always holds by the definition of the algorithm. Now, we show

that self-stabilizing properties ofS3.

No deadlock property:

At a initial configuration,Σn−1
j=0 πj = k, 2 ≤ k < n holds and Bi-r is true at processPj for somej and

somer ∈ {B’,C’,D’,E’ } since∨r∈{B’,C’,D’,E’ }(The guard of Rule Bi-r) = (πj ≥ 1). Next, we show

that a configuration such that all privileges are privileges by Rule Bi-B’ and/or Rule Bi-D’ does not

exist. Assume the contrary. LetPj be a process which has a privilege by Rule Bi-B’ or Rule Bi-D’.

Then, we haveπj+1 ≥ 1. Thus,Pj+1 also has a privilege. By assumption, the privilege ofPj+1 is also

a privilege by Rule Bi-B’ or Rule Bi-D’. By repeating this argument, we conclude that every process

has a privilege by Rule Bi-B’ or Rule Bi-D’, which contradicts the fact thatΣn−1
j=0 πj = k < n.

Closure Property:

Every privilege at a legitimate configurationλ is a privilege by Rule Bi-B’ and/or Rule Bi-C’. It is easy

to see that a configuration afterλ is also a legitimate configuration.

No livelock property:

Assume that a livelock happens. By the proof of no deadlock property, we can conclude that at least

one process have a privilege by Rule Bi-C’ or Rule Bi-E’. For a configurationγ = (q0, ..., qn−1), we

definedM(γ) = max{πj | 0 ≤ j < n}. For anyγ′ such thatγ →∗ γ′, it is clear thatM(γ′) ≤
M(γ). By assumption, there exists a configurationγ′ and a computation∆ starting fromγ′ such that

M0 = M(γ′) = M(γ′′) ≥ 2 for all γ′ →∗ γ′′. More over, there existsγ′′ such thatγ′ →∗ γ′′ in the

computation∆, the number of processesPj such thatπj = M0 is the same at all configurations after

7.1. SELF-STABILIZINGK-MUTUAL EXCLUSION ALGORITHMS 77

γ′′. Let J be a set ofj such thatπj = M0 andπj+1 < M0 at γ′′. Sincek < n, we haveπi 6= M0 for

somei (0 ≤ i < n). In addition, consecutive processes at whichπi = M0 holds exceptPj (j ∈ J) do

not have a privilege by Rule Bi-C’ nor Rule Bi-E’.

• The case thatPj has a privilege by Rule Bi-D’ for eachj ∈ J at any configuration afterγ′′:

If we assume that some processPi (0 ≤ i < n) applied Rule Bi-C’ or Rule Bi-E’ afterγ′′

thenπi+1 < πi was true before the execution of the rule. That is, a token is moved if the right

process has less tokens. Since a set of processes such thatπi = M0 never change, the number of

applications of Rule Bi-C’ and Bi-E’ is finite and no process will have a privilege by Rule Bi-C’

nor Rule Bi-E’ within a finite steps; a contradiction.

• Otherwise, i.e., there exists a configuration afterγ′′ andj ∈ J , Pj has a privilege by Rule Bi-E’

at the configuration:

In this case, we haveπj+1 < πj − 1 = M0 − 1. UnlessPj apply a rule,πj+1 does not

increase. Thus, oncePj has a privilege by Rule Bi-E’, the privilege is not lost by the execution

of Pj+1. Therefore,Pj applied Rule Bi-E’ within a finite steps by the assumption of fairness

of a c-daemon. After application of Rule Bi-E’ byPj , the number of tokens ofPj become

πj − 1 = M0 − 1 and that ofPj+1 becomeπj+1 + 1 < M0. Since the number of tokens of

other processes is the same, the number of processes which haveM0 tokens decreases by the

execution ofPj ; a contradiction.

Therefore, we conclude that livelock never occurs and theS3 system reaches a legitimate configu-

ration within a finite steps. 2

Lemma 12 No livelock property holds forS2.

(Proof) By lemma 10, a livelock such that the same configuration is repeated does not occur. Thus there

is at least one process which have a privilege by Rule Bi-A, Bi-C, Bi-E or Bi-F. By the assumption

of fairness of a c-daemon, one of such process is executed with in a finite steps and the configuration

changes. Thus, we do not take the executions of Rule Bi-B and Rule Bi-D into consideration.

Assume that there exists a configurationγ ∈ Γ2 and a computation∆ which is a livelock computa-

tion. If every track reaches a legitimate configuration in the sense of BP, the entire ring also reaches a

legitimate configuration by lemma 11. Thus, we assume that there exists a configurationγ′ (γ →∗ γ′)

and theI-th track such that theI-th track is not a legitimate configuration in the sense of BP at every

configurationγ′′ (γ′ →∗ γ′′) in the computation∆ and theI-th track never change afterγ′. (Other-

wise, the track will be legitimate.) By the definition ofS2, an application of Rule Bi-A or Rule Bi-C

or Rule Bi-E implies an application of Rule BP-A (and BP-B depending on the condition) for some

track, and an application of Rule Bi-F implies an application of Rule BP-B for some tracks.

Since at least one of Rule Bi-A, Bi-C or Bi-E is applied infinitely often in∆, there is a track which

is infinitely often changes its configuration; thus there exists a track which become legitimate in the

sense of BP within a finite steps. LetI0 be such a track with the smallest suffix. At theI0-th track,

78 CHAPTER 7. SELF-STABILIZING MUTUAL EXCLUSION ALGORITHMS

a privilege is moved from left to right. If a processP has a privilege by Rule BP-B at theI-th track

then Rule BP-B is applied whenP executes Rule BP-A at theI0-th track; a contradiction. Thus, there

exists no privilege by Rule BP-B at theI-th track and exists only privileges by Rule BP-A.

Let J be a set of indices of processes which have a privilege at theI-th track in the sense of BP.

Then,j ∈ J , a processPj has a privilege by Rule Bi-E when it has a privilege by Rule BP-A at the

I0-th track. Note that if the privilege ofPj is a privilege by Rule Bi-A or Rule Bi-C then Rule BP-A

is applied at theI-th track. This contradicts the assumption. (Since theI0-th track is in a legitimate

configuration in the sense of BP and a privilege is circulating by Rule BP-A,Pj has a privilege except

Rule Bi-B or Rule Bi-D whenPj has a privilege by Rule BP-A at theI0-th track.) In addition,I0 < I

holds by the definition of Rule Bi-E. SinceRS(j) is true atPj , the number of segments at theI-th

track is at mostn − 1. BecausetIj−1 = tIj = tIj+1 = 0 is true for eachj ∈ J and there is no privilege

at theI-th track, if we assume that the number of segments at theI-th track is 1 then all tags at the

I-th track are 0, which implies that the track is well formed in the sense of BP and it is a contradiction.

Thus the number of segments of theI-th tracks is 2 ≤ s ≤ n − 1 and the gap size atPj is 0 for each

processPj which has a privilege by Rule BP-A at theI-th track.

By lemma 9 and the fact2 ≤ s ≤ n − 1, there exists a gap whose size is not 0. In other words, if

g0, g1, ..., gs−1 is a sequence of consecutive gap sizes in clockwise order then there existsh such that

gh 6= 0. If PH has a gapgh thenPH does not have a privilege by Rule BP-A. The reason of this fact

is described as below. Consider a configuration at which a privilege by Rule BP-A at theI0-th track.

If PH has a privilege by Rule BP-A at theI-th track thenRS(H) become false since the gap size is

not 0 and Rule Bi-A is applied which implies that the configuration of theI-th track is modified. This

contradicts the assumption.

Thus,¬RA(I, H) = (lIH = 0) ∧ (tIH−1 6= 0) ∧ (lIH−1 6= 0) ∧ (tIH−1 ≥ tIH) is true atPH . By this

fact, a label of the leftmost process in a segment whose gap size is not 0 is 0.

Let a segmentS be a segment whose gap size is not 0 and its left segmentS−1 has a gap size 0. (It

is clear that such segment exists by the above discussion.) By the assumption, the head processP0 of

S has label 0 and its left processP−1 (i.e., the tail process ofS−1) has non-zero label and non-zero

tag. Thus,S−1 contains a process whose label is 0 and the length ofS−1 is more than one since the

guard of Rule BP-B is false at every process. The sequence of labels of theI-th track (starting from

the label ofPH) is as follows.

l1,1, l1,2, l1,3, ..., l2,1, l2,2, l2,3, ..., l3,1, l3,2, l3,3, ...

whereli,1 = 0 and li,j ≤ li,j+1 holds for eachi, j. That is, the sequence of labels is sequences of

non-decreasing sequences starting from 0.

Assume that the head process ofPL of the segmentS−1 has label 0. Then, the guard of Rule BP-A

is true since the gap size ofS−1 is 0. Thus,L ∈ J and the tag ofPL is 0. Each process does not has a

privilege by Rule BP-B and the number of processes which have a label 0 in each segment is at most

one since the number of segments is more than one. Thus, each process in the segmentS−1 has a tag

0; a contradiction. Therefore, the label ofPL is 0. But there is no such sequence of non-decreasing

sequences since the number of segments is more than one; a contradiction.

7.2. A SELF-STABILIZING 1-MUTUAL EXCLUSION ALGORITHM WITH RANDOMIZATION79

By above discussion, we conclude that each track reaches a legitimate configuration within a finite

steps. This fact and lemma 11, this lemma holds. 2

We have the following theorem:

Theorem 10 S2 is a type-2 self-stabilizingk-mutual exclusion system forn ≥ 5 is prime. 2

7.2 A Self-Stabilizing 1-Mutual Exclusion Algorithm with Ran-
domization

In this section, we investigate the 1-mutual exclusion problem as a special case of thek-mutual ex-

clusion problem. We consider the 1-mutual exclusion problem on unidirectional rings assuming state

communication under a c-daemon and a c-dragon and propose uniform 1-mutual exclusion algorithms.

Since the ring is unidirectional, the solution is not trivial. If the ring is bidirectional, random walk

of tokens can be used to stabilization of the number of tokens as described in [IJ90]. However, a

unidirectional ring under a c-daemon cannot use random walk method because the movement of token

is one direction (i.e., the choice for a processes is moves the token right or not) and a c-daemon may

choose a schedule of processes not to collide tokens.

It is shown that there is no self-stabilizing 1-mutual exclusion algorithm if the number of process

is composite[BP89]. We propose a uniform randomized self-stabilizing 1-mutual exclusion algorithm

for any size of ring. The proposed algorithm can escape the malicious schedule of a c-daemon and it

self-stabilizes with high probability without deadlock.

Before proposing an algorithm of randomized version, we propose a self-stabilizing deterministic

mutual exclusion algorithm under a c-dragon. Since the scheduler guarantees the probabilistically fair

execution of process, the algorithm is much simpler.

7.2.1 The self-stabilizing system under a c-dragon

In this subsection we investigate self-stabilizing mutual exclusion systems on unidirectional ring under

a c-dragon.

Theorem 11 For eachn ≥ 1, there exists a deterministic self-stabilizing system under a c-dragon.

(Proof) The casen = 1 is trivial. Burns and Pachl proposed a deterministic self-stabilizing mutual

exclusion system under a c-daemon forn = 2 in [BP89]; their system also works correctly under a

c-dragon. Thus, we consider the casen ≥ 3.

The mutual exclusion system we propose is as follows. Let the state setQ = {0, 1, ..., n − 2}. Let

P0, ..., Pn−1 be processes in the system (in clockwise order) andqi be the state of processPi. Note that

we show a set of rules for each processPi, but every process have the same algorithm. The algorithm

of Sn is as follows:

80 CHAPTER 7. SELF-STABILIZING MUTUAL EXCLUSION ALGORITHMS

Rule: IF qi−1 + 1 6= qi THEN qi := qi−1 + 1(modn − 1)

A legitimate configurationλ is a configuration such that only one process has a privilege atλ. For

example,

0, 1, 1, 2, 3, 4, 5, 6, 7, 8

is a legitimate configuration whenn = 10.

If a processesP has a privilege, we say thatP has a token. It is easy to see that (1) There exists at

least one token in the system at any configurations, and (2) The number of tokens never increase by

the execution of any set of processes.

By execution of a privileged process, it loses a privilege and a privilege may move to the right

process. Therefore, we can consider that a token moves to right. Consider a configuration at which

the number of tokens is more than one. Letτi andτj be any two different tokens. The distance of the

two tokens is defined by the minimum distance of processes on which tokens are. If two tokens are on

consecutive processes, the distance is one. If two tokens collide, the number of tokens decreases by

the definition of the algorithm. Because the scheduler (a c-dragon) chooses a privileged process to be

executed, we can regard the movement of tokens as random walk of tokens on a unidirectional ring.

Now consider any two tokensτi, τj and fix them. Letd(τi, τj , γ) be the distance of two tokensτi, τj

at a configurationγ. We considerd(τi, τj , γ) as a state of a Markov chain. Note that the state 0 is an

absorbing wall and⌈n/2⌉ is a reflecting wall. Since the probability of transition from statei to state

i − 1 and from statei to statei + 1 are both1/2 for each1 ≤ i < ⌊n/2⌋. Thus, it is easy to see that

the expected steps that two tokensτi, τj collide is finite.

Since a c-dragon chooses a privileged process to be executed with uniform probability, the expected

interval steps that one of process corresponding to tokensτi, τj is executed is finite. Therefore, the

expected steps that every tokens collide is finite, which implies that the expected steps that the number

of tokens become one is finite. This is a legitimate configuration. 2

7.2.2 The randomized self-stabilizing system under a c-daemon

In this subsection, we a propose randomized self-stabilizing system under a c-daemon. Burns and

Pachl [BP89] showed that the number of processes of a ring iscompositethen there exists no de-

terministic self-stabilizing system under a c-daemon. As we saw above, the self-stabilizing mutual

exclusion system foreachn is easily obtained by assuming a c-dragon. The next interest lies in a

self-stabilization assuming a c-daemon: Which additional device is necessary for the existence of self-

stabilizing mutual exclusion system for everyn under a c-daemon? Our answer is that if each process

has a random-bit generator then the expected steps that the number of privileges become one is finite

under any schedule.

The outline of reason why there exists no deterministic algorithm is as follows[BP89]: Wheren ≥ 4

is composite,n can be decomposed asn = xy, wherex, y ≥ 2. We can construct ax blocks of

processes of lengthy and by choosingi-th process in a block and executei-th process of all blocks.

By this schedule, the number of processes having privilege is at leastx. Since the behavior of process

7.2. A SELF-STABILIZING 1-MUTUAL EXCLUSION ALGORITHM WITH RANDOMIZATION81

is deterministic, a c-daemon can choose a schedule of execution of processes to keep asymmetry

of configuration. The case explained above, configurations consists ofa blocks of lengthb. To break

symmetry of configurations by malicious scheduling of a c-daemon, randomization is added to process

behavior.

7.2.3 The randomized self-stabilizing 1-mutual exclusion algorithm

We show a self-stabilizing mutual exclusion algorithm for a ring sizen. It is shown that there exists

a deterministic self-stabilizing algorithm for a ring of size2 in [BP89]. The case forn = 1 is trivial.

Therefore, it is enough to consider the casen ≥ 3.

The idea of proposed algorithm is based on a algorithm by Burns and Pachl [BP89]. A state set of

processes is a 3-tuplel.t.r. The first field of states is calledlabel, the second is calledtag, and the last

is calledrandom signature. To stabilize the ring, we add a toss-a-coin feature to each process to break

a symmetry of ring (with high probability) in spite of a c-daemon. The random signature is a signature

of a segment which is randomly generated. To break a symmetry of the ring, signatures of segments

are compared.

Now we describe a formal definition of proposed algorithm. A state set of processes is{l.t.r | l ∈
{0, 1, 2, ..., n− 2}, t ∈ {0, 2, 3, ..., n− 2}, r ∈ {0, 1}}. We define following predicates:

Ai = (li 6= li−1 + 1) ∧ (li 6= 0 ∨ ti = 0 ∨ ti 6= li − li−1 ∨ ti ≤ ti−1)

Bi = (li = li−1 + 1) ∧ (ti 6= ti−1 ∨ ri 6= ri−1) ∧ (li 6= 0)

Ci = ¬Ai ∧ (li 6= li−1 + 1) ∧ (ti = ti−1) ∧ (ri ≤ ri−1)

αi = (li−1 = n − 2)

The algorithm is described below. The procedure RandomBit() generates a random bit (i.e., 0 or 1)

with the same probability1/2.

Rule A: IF Ai ∧ αi THEN

li := li−1 + 1

ti := li − li−1

ri := RandomBit()

Rule A’: IF Ai ∧ ¬αi THEN

li := li−1 + 1

ti := li − li−1

ri := ri−1

Rule B: IF Bi THEN

ti := ti−1

ri := ri−1

82 CHAPTER 7. SELF-STABILIZING MUTUAL EXCLUSION ALGORITHMS

Rule C: IF Ci THEN

li := li−1 + 1

ti := li − li−1

ri := ri−1

A legitimate configurations is a configuration such that

..., l − 2.0.r−3, l − 1.0.r−2, l.0.r−1, l.0.r0, l + 1.0.r1, l + 2.0.r2, ...

for somel ∈ {0, 1, ..., n − 2}. In addition, each legitimate configuration must be the following form

as to random signatureri.

n − 3.0.r, n − 2.0.r, 0.0.r′, 1.0.r′, ..., l.0.r′, l.0.r, l.0.r, ...

for r, r′ ∈ {0, 1}. That is, processes between a process having label 0 and the left process of a

privileged process have the same random signature. The other processes (i.e., processes between a

privileged process and a process having labeln − 1) have the same random signature. For instance, a

configuration

5.0.0, 6.0.0, 0.0.1, 1.0.1, 2.0.1, 2.0.0, 3.0.0, 4.0.0,

is a legitimate configuration whenn = 8.

Correctness proof
Before showing the proof, we define several terms used in the following proof. LetP0, P1, ..., Pn−1

be a consecutive processes in a clockwise order on the ring andli.ti.ri be a state of processPi. A

segments is a sequence of consecutive processess = Pa, Pa+1, ..., Pb such thatli = li−1 +1 for each

i = a + 1, a + 2, ..., b and la 6= la−1 + 1 and lb+1 6= lb + 1. Let ♯(γ) be the number of segment

at γ. We say that there is agapbetween processesPb andPb+1 if lb+1 6= lb + 1. Thegap sizeof a

segments = Pa, Pa+1, ..., Pb is lb+1 − lb. A processPa (Pb) is called ahead process(a tail process)

of s. A segments = Pa, Pa+1, ..., Pb is well formedif (ti = ti−1 ∧ ri = ri−1) ∨ (li = 0) for each

i = a + 1, a + 2, ..., b andtb = lb+1 − lb.

Now, we give the correctness proof of proposed algorithm.

Lemma 13 For any configurationγ ∈ Γ, the number of segments is at least one.

(Proof) It is clear because the possible labels aren − 1. 2

Lemma 14 The algorithm is deadlock free.

(Proof) Assume that deadlock happens. Letγ be any deadlock configuration. Since logical OR of

guard of all rules isAi ∨ Bi ∨ Ci, a condition¬Ai ∧ ¬Bi ∧ ¬Ci holds for every processi at γ. For

every head process of a segment,li = 0 ∧ ti 6= 0 ∧ ti = li − li−1 ∧ ti > ti−1 holds because¬Ai and

li 6= li−1 + 1. Thus, for every segments atγ, Head(s) has label 0.

The number of segments is at least 1 by lemma 13, we consider following two cases.

7.2. A SELF-STABILIZING 1-MUTUAL EXCLUSION ALGORITHM WITH RANDOMIZATION83

• When the number of segments is 1:

The tail process has label 0 because the number of segment is one and the head process has label

0. Therefore,ti = 0 ∨ ti 6= li − li−1 is true at the head process sinceli − li−1 = 0.

By definition of Rule A and Rule A’, the head process has a privilege by Rule A or Rule A’; a

contradiction.

• Otherwise:

Because the number of segments is more than one and every head process has label 0, a process

whose label is 0 is a head process. Since no process has a privilege by Rule B, every process in a

segment has the same tag and random signature, which contradicts the fact thatti > ti−1 holds

for at head process of every segments. 2

Lemma 15 Closure property holds.

(Proof) Letλ be any legitimate configuration. By the definition of rules, it is clear that the head process

of the only segment always have privilege by one of Rule A or Rule A’. It is easy to see that the next

configuration ofλ is also a legitimate configuration. 2

Lemma 16 Fairness property holds.

(Proof) Letλ be any legitimate configuration. By the definition of legitimate configurations, the num-

ber of processes which have a privilege is one and by lemma 15, the privilege moves to a right process

by a execution. Therefore, the privilege circulates the ring. 2

Lemma 17 Mutual exclusion is guaranteed.

(Proof) It is clear by the definition of legitimate configurations. 2

Above lemmas proves four property of self-stabilizing systems. We prove that the expected steps

the system stabilize is finite.

Lemma 18 Let γ0 ∈ Γ be any configuration and∆ = γ0, γ1, γ2, ... be any infinite computation

starting fromγ0. Then, there exists0 ≤ I < ∞ such that a transitionγI → γI+1 is an application of

Rule A or Rule A’ or Rule C.

(Proof) Assume that there existsγ0 ∈ Γ and an infinite computation∆ = γ0, γ1, γ2, ... such that a

transitionγj
γ→j+1 is an application of Rule B for eachj ≥ 0. Application of Rule B never change

members of segments and changes only a tag. By definition of Rule B, a tag does not propagate over

a gap (and label 0). Thus, for any segments, the number of applications of Rule B fors is finite if no

other rules are applied and there exists a configurationγJ such thatγ0 →∗ γJ and there is no privilege

by Rule B atγJ .

84 CHAPTER 7. SELF-STABILIZING MUTUAL EXCLUSION ALGORITHMS

Because the algorithm is deadlock free (by lemma 14), there exists a process that has a privilege and

the privileges are privileges by one of Rule A or Rule A’ or Rule C. Therefore, one of these rules are

applied. 2

Lemma 19 The configuration reaches a legitimate configuration within a finite steps if the number of

segments at an initial configurationγ is one.

(Proof) Letγ ∈ Γ be any configuration of which the number of segments is one. It is easy to see that

the number of segments is non-increasing by the definition of algorithm. Thus, for anyγ′ ∈ Γ such

thatγ →∗ γ′, the number of segments atγ′ is one. By lemma 18, the head process executes one of

Rule A, Rule A’, or Rule C. By execution of any of these rules, the head process changes and the label

of the new head process increases by one. Therefore, within a finite steps fromγ, the configuration

become a configuration such that the label of a head process of the segment is0. Let this configuration

beγ0 and let processes beP0, P1, ..., Pn−1 in clockwise order in the ring andP0 is the head process at

γ0.

By lemma 18,P0 executes one of Rule A, A’ or C and its tag and random signature become the same

asPn−1’s. Note that the tag is zero. Let the configuration afterP0 executed a rule beγ1. Similarly,P1

executed a rule and its tag and signature become as the same asP0. Repeating this argument, it is easy

to see that the configuration become the legitimate configuration. 2

Lemma 20 For any configurationγ ∈ Γ such that the number of segment isn at γ, the number of

segments becomen − 1 by an execution of a rule.

(Proof) There is no privilege by Rule B since the length of every segments is 1. By this fact and by

lemma 14, every privilege is a privilege by Rule A or Rule A’ or Rule C. The execution of any of these

rules makes a segment of length 2 and the number of segments becomen − 1. 2

Lemma 21 Letγ0 be any segment such that♯(γ0) > 1 ands be any segment atγ0. Then, there exists

no computation startingγ0 such that the number of application of Rule B by processes ins is infinite

if the processes consisting ofs never change.

(Proof) Lets consists of processesP1, P2, ..., Pm in clock wise order of the ring. Assume that there

exists a computation such that the number of application of Rule B is infinite. Recall that the processes

consisting ofs never change during the computation and no process ins applies Rule A, A’, nor C by

assumption.

Let γ1 be a configuration just after a process ins applied Rule B afterγ0. Similarly, every time

a process ins applies Rule B, define a configurationγi. Then we have a sequence of configuration

γ0, γ1, γ2, For eachγi, we associate a integervi which is represented bym-bit vector whosej-th

bit is 1 if and only ifPj has a privilege by Rule B. The most significant bit (1st bit) ofvi corresponds

to P1 and the least significant bit (m-th bit) of vi corresponds toPm. Thus, 1st bit ofvi is always 0

becauseP1 is a head process.

7.2. A SELF-STABILIZING 1-MUTUAL EXCLUSION ALGORITHM WITH RANDOMIZATION85

Then, it is easy to see that the number sequencev0, v1, v2, ... is a decreasing sequence. Because

vi ≥ 0 for all i, there exists no such number sequence. This is a contradiction. 2

Lemma 22 Let γ0 be any segment such that♯(γ0) > 1. Assume that there exists a computation

starting fromγ0 such that the number of segments never change. Then, there exists no segment whose

head process never changes.

(Proof) Assume that there exists such segments. By lemma 21, there exists no computation such that

only Rule B is applied. Thus, Rule A, A’ or C is applied within a finite steps, which implies that there

exists a segments′ whose member changes infinitely many times during an infinite computation. Let

P be a head process ofs. Then,P also become a member ofs′ infinitely often because a segment

moves to only one direction on a ring; this is a contradiction. 2

Next lemma shows that any schedule whichtry to keep the number of segments leads to a configu-

ration in which all segments are well formed.

Lemma 23 Let γ0 ∈ Γ be any configuration such that the number of segments ofγ0, ♯(γ0), is 2 ≤
♯(γ0) ≤ n − 1. Assume that there exists an infinite computation∆ = γ0, γ1, γ2, ... such that♯(γ0) =

♯(γj) for all j ≥ 0. Then, there existsI such that every segment atγi is well formed for alli ≥ I.

(Proof) LetL = ♯(γ0) (= ♯(γ1) = ♯(γ2) = ...) and s1, s2, ..., sL be a sequence of segments in

clockwise order of the ring. Note that processes consisting segments change with the computation

proceeds, but the number of segments is kept by the assumption.

Let l be the label of the tail process ofs1 atγ0. Then, by lemma 22, the head process ofs2 executes

a rule and become the tail process ofs1 within a finite steps and its label isl + 1. Repeating this

discussion, it is easy to see that the configuration reaches a configuration such that the label of the tail

process ofs1 become 0 within a finite steps. Let this configuration beγ1 andP1 = Tail(s1).

Consider a configurationµ2 such thatP1 become the head process ofs1 for the first time afterγ1.

(It is easy to see that such configuration exists by 22.) By the definition of rules,P1 never change its

tag and random signature betweenγ1 andγ2. Thus, the right processes ofP1 in the same signature

inheritP1’s tag and random signature. Therefore, the segments1 is well formed atγ2.

The random signature of a segment is generated again when the new tail process takes label 0, but

the segment is still well formed. By repeating the same argument,s2, s3, ..., sL become well formed

within a finite steps. Therefore, every segment become well formed within a finite steps. 2

The range of labels and definition of gap is the same as the ones in [BP89]. Lin and Simon showed

the next lemma in [LS92] for the algorithm in [BP89]. Thus, the next lemma also holds for our

algorithm.

Lemma 24 Let γ ∈ Γ be any configuration ands1, ..., sL be segments atγ and gi be a gap ofsi,

whereL = ♯(γ). Then,
∑

1≤i≤L gi = L − 1 mod n − 1

86 CHAPTER 7. SELF-STABILIZING MUTUAL EXCLUSION ALGORITHMS

(Proof) Proof can be found in [LS92]. 2

Lemma 25 Letγ0 be any configuration such that2 ≤ ♯(γ0) ≤ n−1 and every segment is well formed

at γ0 and∆ = γ0, γ1, ... be any infinite computation. Then, there exists a head process of a segment,

sayP , andγk such thatP does not have a privilege by Rule A nor Rule A’ atγk,

(Proof) Assume that every head process has a privilege by Rule A or Rule A’ atγj for all j. This

implies thatAi is true at all head process atγj . Although The label of a head process changes with

the computation proceeds, the relative relation of labels of tail process and head process which are

consecutive processes on a ring is kept (e.g.ti 6= li − li−1). In addition, the tag of each segment never

change during the computation. Therefore, a conditionti = 0 ∨ ti 6= li − li−1 ∨ ti < ti−1 is always

true for all head processes of segmentsi. Otherwise,Ai become false whenli = 0.

Since all segments are well formed,ti = li − li−1 holds. Therefore, the above condition becomes

ti = 0 ∨ ti < ti−1. Becauseti < ti−1 does not hold for all head processes, there existsj such that

tj ≥ tj−1. Since above condition is true,tj = 0 holds. Now consider the right segmentsj′ , where

j′ = j + 1. To tj′ = 0 ∨ tj′ < tj′−1 be true,tj′ = 0 holds sincetj′−1 = tj = 0 and tags are

non-negative. Repeating this discussion, we haveti = 0 for all i, which contradicts the lemma 24.2

Now, we show that the number of segments decreases with high probability and the expected steps

that the ring converges to a legitimate configuration is finite.

Lemma 26 Letγ0 be any initial configuration such that2 ≤ ♯(γ0) ≤ n − 1. Then, the expected steps

that the number of segments decreases is finite.

(Proof) Assume that∆ = γ0, γ1, γ2, ... be any infinite computation such that the number of segments

never decrease. By lemma 23, there existsI such that all segments are well formed atγi for anyi ≥ I.

We consider configurations afterγI .

Since every segments are well formed and the number of segments are kept, there is no process

which has a privilege by Rule B at any configurationγi (i ≥ I). By lemma 25, there exists a process

P and a configurationγJ (J ≥ I) such thatP is a head process of a segmentsj and does not has

a privilege by Rule A nor Rule A’. Since every head process has a privilege by assumption,P =

Head(sj) has a privilege by Rule C.

At the computation afterγJ , every process never change its tag, and relative relation of labels at

head processes never change (e.g.,li 6= li−1). Thus,ti = 0 ∨ ti 6= li − li−1 ∨ ti < ti−1 (seeAi)

is always false at Head(sj). Otherwise, it does not have a privilege by Rule C atγJ . Therefore, at

configurationsγk (k ≥ J), Head(sj) has a privilege by Rule A or Rule A’ when its label is not 0 and

it has a privilege by Rule C otherwise. When Head(sj) has a privilege by Rule C, the label of the left

process of Head(sj) is notn − 2 nor 0 because, if otherwise, it has a privilege by Rule A or Rule A’

(seeAi).

Let sj−1 be the left segment ofsj . Then, Head(sj) has a privilege by Rule A when the label of

Tail(sj−1) is n − 2. By an application of Rule A by Head(sj), new random signature ofsj−1 is

7.2. A SELF-STABILIZING 1-MUTUAL EXCLUSION ALGORITHM WITH RANDOMIZATION87

generated. Therefore, every time the value of label circulates,sj−1 has new random signature.

Now consider the right segmentsj+1 of sj . If Head(sj+1) has a chance to have a privilege by Rule

C at configurations afterγJ , we can conclude thatsj generates new random signature every time the

value of label circulates by a similar discussion described above. Otherwise (i.e.,sj+1 never have a

privilege by Rule C),sj also generates new random signature every time the label of Tail(sj) is n − 2

by Rule A.

Let τ0, τ1, ... be a sequence of indexes of configurations such thatsj and sj−1 changed random

signatures at least once at some configurations betweenγτi−1
andγτi

. Then, it is easy to see that there

exists a constantT determined by the algorithm such thatτl−1 − τl < T < ∞ for all l.

Since random signature is randomly chosen from{0, 1}, the probabilityri ≤ ri−1 holds at Head(sj)

is 3/4. The expected steps thatri ≤ ri−1 become false is at most4T/3. If ri ≤ ri−1 become false, the

head process ofs cannot make a step by Rule C and it is clear that a daemon cannot choose a schedule

that keeps the number of segment. Thus, the number of segment decrease. 2

We have the theorem from above lemmas.

Theorem 12 For eachn ≥ 1, there exists a randomized self-stabilizing mutual exclusion system for a

ring of sizen under a c-daemon. 2

Note that the algorithm does not work under d-daemon. (Consider a configuration such that a state

of every process is0.0.0 and a schedule such that all processes are executes at every step. Then, the

number of segments never decrease.)

Reduction of the number of states
The proposed algorithm above requires2(n − 1)(n − 2) = Θ(n2) states. By the similar technique

proposed in [BP89], we can reduce the number of states of above algorithm.

The number of possible tag value is reduced in the following algorithm, it ranges over{0, 1}. First,

we define following predicates:

Ai = (li 6= li−1 + 1) ∧ (li 6= 0 ∨ ti = 0 ∨ ti 6= f(li − li−1) ∨ ti ≤ ti−1)

Bi = (li = li−1 + 1) ∧ (ti 6= ti−1 ∨ ri 6= ri−1) ∧ (li 6= 0)

Ci = ¬Ai ∧ (li 6= li−1 + 1) ∧ (ti = ti−1) ∧ (ri ≤ ri−1)

αi = (li−1 = n − 2)

The labels range over{0, 1, ..., n − 2}, the random signatures range over{0, 1}. The functionf is

a function from{0, 2, 3, ..., n− 2} and defined as follows.

f(k) =

{

0 if k = 0
1 otherwise

Note thatf(k) = 0 iff k = 0.

88 CHAPTER 7. SELF-STABILIZING MUTUAL EXCLUSION ALGORITHMS

The algorithm is the following. The difference is that new tag is given byf(li − li−1). The set of

legitimate configurations is the same as the set defined in the previous version.

Rule RA: IF Ai ∧ αi THEN

li := li−1 + 1

ti := f(li − li−1)

ri := RandomBit()

Rule RA’: IF Ai ∧ ¬αi THEN

li := li−1 + 1

ti := f(li − li−1)

ri := ri−1

Rule RB: IF Bi THEN

ti := ti−1

ri := ri−1

Rule RC: IF Ci THEN

li := li−1 + 1

ti := f(li − li−1)

ri := ri−1

By modifying the algorithm, the we need a new definition ofwell formed. A segmentsi is well

formed iff every process ofs has a tagf(gi), wheregi is the gap size ofsi. The condition for random

signature is the same as the original definition.

Lemma 27 The algorithm satisfies the (1) closure property, (2) fairness property, and (3) mutual

exclusion.

(Proof) Because the behavior of the ring is the same as the original algorithm, the same proof for

closure property holds. Thus, the fairness property and mutual exclusion property also hold.2

Lemma 28 The algorithm satisfies no deadlock property.

(Proof) The proof is the identical to the proof of lemma 14 exceptti = li − li−1 is replaced by

ti = f(li − li−1) andti 6= li − li−1 is replaced byti 6= f(li − li−1). 2

Lemma 29 The algorithm satisfies no livelock property.

(Proof) Lemmas 18, 19, 20, 23 hold by the same proof. Lemma 25 is shown by replacingti = li− li−1

by ti = f(li − li−1) andti 6= li − li−1 by ti 6= f(li − li−1) in the proof. Note thatti = 0 does not

hold at all head processes becauseti = 0 implies li = li−1 and contradicts the 24. Lemma 26 is also

7.3. CONCLUDING REMARKS 89

shown by replacingti = li − li−1 by ti = f(li − li−1) andti 6= li − li−1 by ti 6= f(li − li−1) in the

proof. 2

Now we have the following theorem.

Theorem 13 For eachn ≥ 1, there exists a randomized self-stabilizing mutual exclusion system which

requires4(n − 1) states per process for a ring of sizen under a c-daemon. 2

7.3 Concluding Remarks

In this chapter, we proposed several self-stabilizing mutual exclusion algorithms.

In the first section, we proposed a deterministic self-stabilizingk-mutual exclusion algorithm under

a c-daemon on unidirectional and bidirectional ring networks whose size is prime and showed their

correctness. It is easy to show that there is no self-stabilizing algorithm whose sizen is composite and

n does not have a factork. (The proof can be shown by the similar method used in Theorem 2.1 in

[BP89].) In the case thatn has factork, whether there exists an algorithm or not is an open problem.

In the next section, we investigated self-stabilizing mutual exclusion systems under assumptions

of a c-daemon, a c-dragon and randomization. We showed that the number of states per process

require isΘ(n) if we assume dragons and randomized behavior of processes under a c-daemon. The

known deterministic algorithm for 1-mutual exclusion systems requiresΘ(n2/ lnn) but our algorithm

assuming randomized behavior for each process requires onlyO(4(n − 1)).

Carl-Johan Seger proved that any uniform deterministic self-stabilizing 1-mutual exclusion system

under a c-daemon for a ring whose size isn requires at leastn−1 states [Bur94]. He showed that there

exists a schedule of processes which cause a livelock if we assume the existence of a self-stabilizing

system and the number of states of processes is less thann− 1. This lower bound by Seger is a bound

guaranteeing no livelock. On the other hand, Israeli and Jalfon [IJ90] showed thatΩ(log n) states is

necessary for uniform self-stabilizing system on unidirectional ring. Their lower bound guarantees no

deadlock property. Thus, there is a gap for lower bounds of the number of states between achieving

no livelock and no deadlock. There is a gap between lower bounds and proposed algorithms. The

following problems are left as future tasks.

• Does there exist deterministic self-stabilizing mutual exclusion systems under a c-daemon which

requires a state set whose size is less thanΘ(n2/ lnn)?

• Does there exist deterministic self-stabilizing mutual exclusion systems under a c-dragon which

requires a state set whose size is less thann − 1?

Chapter 8

Conclusion

In this dissertation, we have investigated the distributedk-mutual exclusion problem by two ap-

proaches: the coterie approach and the self-stabilization approach. We proposed several algorithms

for distributedk-mutual exclusion.

In Part I, we have studied the coterie approach.

In Chapter 2, we have proposed a concept calledk-coterie as an extension of coterie. To allowk

processes be in their critical sections,k-coterie has distinctk quorums but does not havek+1 quorums.

Processes can enter their critical section without interfering with other processes; on the other hand,

processes interfere if we use another definition ofk-coterie proposed in [BC94, MA93].

In Chapter 3, the analysis of availability of coterie has been shown. We have shown a sufficient

condition and a necessary condition such tat ak-majority coterie is optimal under an assumption

that a topology of communication links are complete network and every process fails with the same

probability.

In Chapter 4, we have proposed a distributedk-mutual exclusion algorithm using ak-coterie. We

have shown that the message complexity of the proposed algorithm is3|Q|, where|Q| is the size of a

quorum.

In Chapter 5, we have shown the goodness of our distributedk-mutual exclusion algorithm by

comparing with Raymond’s algorithm by computer simulation. The simulation was done using work-

stations which are connected to a local area network. Since each process was executed on different

workstations, algorithms are simulated in real-time; which can be considered as being close to a real

distributed system. The simulation result shows that the proposed algorithm in Chapter 4 is much

better than Raymond’s algorithm ifk is large and mutual exclusion request is not frequent.

In Part II, we have studied the self-stabilization approach. In Chapter 6, we have explained compu-

tational models and given a survey for the research area of self-stabilizing mutual exclusion. We also

discussed a motivation of self-stabilizing approach. Self-stabilizing systems can tolerate any kind of

transient failures. Thus, Self-stabilizing systems are fault-tolerant systems.

In Chapter 7, we have investigated self-stabilzingk-mutual exclusion on ring networks. First, we

91

92 CHAPTER 8. CONCLUSION

have investigated two types of self-stabilizingk-mutual exclusion problems on unidirectional and

bidirectional rings. We have shown that there exists no type-2 problem (i.e., a configuration of any

arrangement of privileges can be reachable from any configuration) does not exist on unidirectional

rings. We have proposed a type-1 self-stabilizingk-mutual exclusion algorithm on unidirectional rings

and type-2 self-stabilizingk-mutual exclusion algorithm on bidirectional rings under c-daemon. These

algorithm require that the number of process of a ring is prime. In the case that the number of process

has a factorf 6= k, there is a schedule of processes which does not reach a legitimate configuration.

Next, we investigated self-stabilizing 1-mutual exclusion problem as a special case ofk-mutual ex-

clusion. We have proposed a randomized self-stabilizing 1-mutual exclusion algorithm for any size

of unidirectional ring under c-daemon. In the algorithm, randomization is used because there is no

algorithm if the number of process is composite.

The coterie approach is an approach that reduces the number of messages for distributed mutual

exclusion and increases the availability. The algorithm proposed in Chapter 4, does not consider any

failures such as message omissions, process failures, etc. The design of an algorithm which tolerates

such failures is the next step of the work.

In [Bal94b, Bal94a], Baldoni proposedk-coterie, which is completely different from ours. The basic

idea of his distributedk-mutual exclusion algorithm is that each process hask permissions (or, tokens);

a process wishing to enter a critical section must collect tokens from each process in a quorum. To

make this scheme work, the requirements for a quorum setC is as follows:

• Intersection Property: For anyq1, ..., qk+1 ∈ C, ∩k+1
i=1 qi 6= ∅.

• Minimality Property: For anyqi, qj ∈ C such thatqi 6= qj , qi 6⊆ qj .

By our definition ofk-coterie, each process has one token. On the other hand, each process hask

tokens by Baldoni’sk-coterie. We believe that there is a unified scheme for these ideas. For example,

there may be a condition for a quorum set to achive4-mutual exclusion when each process has2

tokens. The investigatin of unifiedk-coterie scheme is left as a future task.

The self-stabilization approach is a strong approach for transient failures. The design of coterie

based mutual exclusion algorithms which tolerates transient failures by using a concept of self-

stabilization is a interesting theme. However, designing a self-stabilizing algorithm and proving the

correctness are difficult tasks. The automatic construction of self-stabilizing algorithm is an important

for realizing self-stabilizing systems.

In this dissertation, we have treated the coterie approach and the self-stabilizing approach separately.

A unification of these two approaches is an another task.

Appendix A

Local Coteries and a Distributed
Resource Allocation Algorithm

The distributedk-mutual exclusion problem treats a situation such that every process in a distributed

system share all resources uniformly. But it is natural to consider that a set of resources available to a

process is different by processes. This may happen by limitations of access rights or some geometrical

reasons.

Consider a situation such that a processP1 has access rights to resourcesr1, r2, r3 and a process

P2 has access rights to resourcesr3, r4 and each process issues a resource request when it requires

resources. In such case, thek-mutual exclusion is not suitable to arbitrate the conflicts of resource re-

quests. In addition, if two processesP3, P4 do not share any resources then it is desirable that resource

allocation is done without interference. The mutual exclusion and thek-mutual exclusion problems

are special cases of the resource allocation problem. Such problem is proposed and investigated as

“the drinking philosophers problem” by Chandy and Misra [CM84]. In their paper, they showed a

token-based resource allocation algorithm for a special case in such a way that each resource is shared

by only two processes. The objective of this appendix is to solve the problem under the frame work of

coterie and its variants. Generalized resource sharing model is also appear in the paper by Miyamoto

[Miy94], in which an allocation problem ofanonymousresources which are shared by any number of

processes is investigated. He used coterie approach to solve the problem.

In this appendix, we consider a problem of allocatingnamedresources; a process requests any

amount resources and any of free resources are allocated but a process must know the names of al-

located resources to use them. We propose a new concept oflocal coterieand a resource allocation

algorithm using a local coterie.

A.1 The Resource Model

A distributed system consists ofn processesU = {P1, P2, ..., Pn}, bidirectional communication links

each connecting two processes, andm resourcesR = {r1, r2, . . . , rm} shared by processes. Processes

93

94APPENDIX A. LOCAL COTERIES AND A DISTRIBUTED RESOURCE ALLOCATION ALGORITHM

P ∈ U are allowed to use some of the resourcesr ∈ R. We denote this relation by functionα : U →
2R. For anyu ∈ U ,

α(P) = {r ∈ R | P has an access right tor} ∈ 2R.

WhenV is a set of processes, with abuse of notation,α(V) denotes∪P∈V α(P). The triple (U, R, α)

is called theshare structureof the system.

We define a configurationc of the distributed system as a tuple of the states of all processes and

communication links. Then a computationπ of the system can be described by a (possibly infinite)

sequence of configurations starting from the initial configuration. Note that the computation is not

determined uniquely in general, even if the initial configuration (including input) is given because of

the asynchrony of system.

When the system is at configurationc, processesP may be accessing some resourcesr. For any

P ∈ U , ρP (c) denotes the set of resourcesr which are being accessed byP when the system is at

configurationc.

A.2 The Resource Allocation Problem

Consider a distributed system in which each process repeats the local computation and the resource

access phases forever. The former phase does not include resource access instructions, and the latter is

a series of resource access instructions which starts with a resource request instruction for requesting

some resources and ends up with a resource release instruction for releasing all resources it is access-

ing. Let S = (U, R, α) be its share structure. Each time the resource access phase is executed, the

number of resources a processP requests can change between 1 and|α(P)|.
The resource allocation problemis the problem of implementing the resource requests and release

instructions in such a way that whenever a processP requestsk (≤ |α(P)|) resources, eventually

k resources are allocated toP . Furthermore, as the restriction arising from the share structure, any

computationπ = c0, c1, ..., ci, ... of the resulting distributed system must satisfy the following two

conditions:

Allocation Validity: For any configurationci and any setV ⊆ U of processes,

⋃

P∈V

ρP (ci) ⊆ α(V).

Mutual Exclusion: For any configurationci and any two different processesP,P ′ ∈ U ,

ρP (ci) ∩ ρP ′(ci) = ∅.

Allocation Validity guarantees that a processP only accesses resources to which it has an access

right, and Mutual Exclusion guarantees that every resource is allocated to at most one process at a

time.

A.3. LOCAL COTERIES 95

A.3 Local Coteries

In general, the resource allocation problem treats cases in which resources are shared by different sets

of processes unlike the mutual exclusion problem. Consider a case in which two processesP andP ′

do not share any resource. Then it is a natural requirement that their requests be interference free. (It

may or may not be possible, depending on the remaining part of a share structure.) As long as the

same quorum set is associated toP andP ′, the interference inevitably occurs.

In order to take into account the share structure,For each processP , we associate (possibly different)

quorum setsQP ⊆ 2U reflecting the share structure. We call the set{QP | P ∈ U} a local coterie

with respect to a share structure(U, R, α). The formal definition of the local coterie is as follows.

Definition 8 A non-empty set{QP | P ∈ U} is a local coteriewith respect to a share structure

(U, R, α) if and only if the following conditions are satisfied.

• Non-emptiness:∀P ∈ U [QP 6= ∅].

• Intersection Property: ∀P,P ′ ∈ U [α(P) ∩ α(P ′) 6= ∅ ⇒ ∀q ∈ QP , ∀q′ ∈ QP ′ [q ∩ q′ 6= ∅]].

• Minimality: ∀P ∈ U, ∀q, q′ ∈ QP [q 6⊆ q′]. 2

Note that the definition of local coterie includes that of coterie as a special case when|R| = 1 and

α(P) = R for all P ∈ U .

First, we show a simple construction algorithm for a local coterie with respect to a share structure

(U, R, α).

Algorithm LocalCoterie(U, R, α);

begin

qP := {P} for all P ∈ U ;

for all r in R do

for eachP,P ′ in U such thatP 6= P ′ do
if r ∈ α(P) ∩ α(P ′) then

qP := qP ∪ {P ′};

qP ′ := qP ′ ∪ {P}
fi

od

od;

QP := {qP } for all P ∈ U ;

return {QP | P ∈ U}
end.

96APPENDIX A. LOCAL COTERIES AND A DISTRIBUTED RESOURCE ALLOCATION ALGORITHM

Theorem 14 The algorithm LocalCoterie(U, R, α) correctly computes a local coterie with respects to

a share structure(U, R, α), in timeO(|R||U |2).

(Proof) The non-emptiness and the minimality trivially holds since a quorum setQP contains only one

quorum for each processP ∈ U . Assume that the intersection property does not hold. LetP1, P2 be

processes such thatP1 6= P2 and(α(P1) ∩ α(P2) 6= ∅) ∧ (qP1
∩ qP2

= ∅), whereqPi
∈ QPi

for

i = 1, 2. Sincer ∈ α(P1) ∩ α(P2) for somer ∈ R, P2 ∈ QP1
andP1 ∈ QP2

by the definition of the

algorithm. This implies{P1, P2} ⊆ qP1
∩ qP2

becausePi ∈ QPi
for eachPi ∈ U ; a contradiction.

It is easy to see the execution time of the algorithm isO(|R||U |2). 2

Corollary 3 For any share structure(U, R, α), there exists a local coterieC with respects to share

structure(U, R, α). 2

A.4 A Distributed Resource Allocation Algorithm

Now, we are ready to introduce our algorithm. We first explain an outline of the algorithm, and then

describe it in detail.

The processes altogether maintain a distributed database which keeps pairs of a process and a re-

source it is currently accessing. A processPu wishing to accessk resources sends a query asking

whether or not there arek resources available tou.1 If the answer is yes, then thek resources are

allocated toPu. Hence, the algorithm is assertion-based, as well as quorum-based.

Let {Qu} be a local coterie, whereQu is the quorum set associated with processPu. Then an outline

of the algorithm is as follows.

In our algorithm, a processPv is (partially) responsible for the resources which are accessible from

a processPw such thatPv appears as an element of a quorumq in Qw. Let Rv be the set of resources

for which Pv is responsible. For each resourcer ∈ Rv, Pv remembers the process which currently

accessesr (or the fact it is free, otherwise). A processPu wishing to accessk resources selects an

arbitrary quorumq ∈ Qu, and sends a query message〈QUERY〉 to every processPv in q. A process

Pv receiving query〈QUERY〉 sends back the names of resources available toPu. Upon receiving the

list of available resource names from every processPv ∈ q, Pu selects arbitrarilyk resource names

which appear in every list and sends a lock message〈LOCK〉 with thek names to every processPv to

let it update the current states of thek resources. WhenPu releases thek resources, it sends an unlock

message〈UNLOCK〉 with thek names to every processPv to let it change the states of the resources

into free.

The above explanation is just an outline of the algorithm and it does not contain explanations how to

avoid deadlocks and starvations and how to treat cases in whichPu cannot findk resources available

to Pu. Moreover, in order for the algorithm work correctly, the query step must be carried out in the
1We say that a resourcer is availableto Pu if r ∈ α(Pu) andr is currently free. On the other hand, thatPu is accessible

to r simply meansr ∈ α(Pu).

A.4. A DISTRIBUTED RESOURCE ALLOCATION ALGORITHM 97

mutually exclusive way. Nevertheless, we would like you to observe that ifPu decides to access a set

of resourcesr, thenr is currently available toPu, i.e., Pu has access right tor andr is not used by

some process, by definition of local coterie.

The algorithm assumes that each processPu maintains the following local variables. For conve-

nience of explanation, as in the above rough explanation, define

Sv = {Pw | Pv ∈ q for someq ∈ Qw}

and

Rv =
⋃

Pw∈Sv

α(Pw).

• Cu – the current logical time atPu. Initially, it is 0, and is automatically incremented.2

• Du – the array to hold for each resourcer ∈ Ru, if r is LOCKed or not. More precisely, for

eachr ∈ Ru, Du(r) = (Pu, t) if r is locked by〈LOCK〉 message with timestampt issued by

Pu. Otherwise, ifr was lastly released by〈UNLOCK〉 message with timestampt, thenDu(r) =

(⊥, t). Initially, Du = (⊥, 0) for all r ∈ Ru.

• Wu – it holds the name of process to whichPu sends the current states of resources held in

Du and is waiting for a reply. In other words,Wu is the process from whichPu is waiting for

〈LOCK〉 message, after sending〈RESPONSE〉 message. IfPu is not in this situation,Wu = ⊥.

• Tu – it holds the timestamp attached to the〈QUERY〉 message that the process held inWu issued.

Tu = ⊥ if Wu = ⊥.

• Xu – the priority queue to hold〈QUERY〉 messages waiting atPu for their turns. They are sorted

in the order of their timestamps.

We describe our algorithmAllocResourcein an event driven form.

Algorithm AllocResource

Let {Qu} be the local coterie used in the algorithm.

1. When a processPu wishes to accessk (≤ |α(u)|) resources:

ProcessPu arbitrarily selects a quorumq ∈ Qu, and sends〈QUERY, Pu, Cu〉 to every process

in q.3 Recall thatCu is the current logical time atPu and is attached to the message as the

timestamp. Then it waits until both of the following two conditions hold:

2By using a standard technique that uses unique process identifiers, events occurred in the system are totally ordered by
means of the logical time[Lam78].

3The numberk of requesting resources is not a parameter of〈QUERY〉.

98APPENDIX A. LOCAL COTERIES AND A DISTRIBUTED RESOURCE ALLOCATION ALGORITHM

• It has received〈RESPONSE, Pv, Dv〉 messages at least once from each processPv ∈ q.

Note thatPv sends〈RESPONSE, Pv, Dv〉 message carrying the latest version ofDv as

soon asDv is updated, even if it has sent an older version toPu (see Case 7). Note also

thatPu does not need to store old versions. It simply discards them and holds the latest

one (see Case 3).

• Recall that everyDv contains the states of all resources inα(Pu) from the view ofPv.

Let Au ⊆ α(Pu) be the set of resourcesr satisfyingDv∗(r) = (⊥, t∗), wheret∗ is the

maximum value occurred in the second (i.e., time) field ofDv(r) among allPv ∈ q, and

Pv∗ is the process achievingt∗. Intuitively,Au is the set of resources currently available to

Pu, as we will show in the next section. The second condition is thatAu contains at least

k resources.

If both of the above conditions hold,Pu then arbitrarily selects a setSu of k resources fromAu,

sends〈LOCK, Pu, Cu, Su〉 message to every processPv ∈ q, and accessesSu.

2. When processPu releases the setSu of accessing resources:

ProcessPu sends〈UNLOCK, Pu, Cu, Su〉 message to every processPv ∈ q.

3. When processPu receives〈RESPONSE, Pv, Dv〉 message from a processPv:

ProcessPu storesDv. If it has received an older version ofDv, then it discards it and stores the

latest one. Because the message order is assumed to be unchangeable in each communication

link, Pu always holds the latest version among versions received so far.

4. When a processPv receives〈QUERY, Pu, t〉 from processPu:

If Wv = ⊥, i.e., if processPv does not wait for〈LOCK〉 message from another process, it sends

〈RESPONSE, Pv, Dv〉 message toPu, and setsWv := Pu andTv := t. Recall thatt is the

logical time atPu at which the〈QUERY〉 message was issued (see Case 1).

Otherwise,Wv = Pw for some processPw ∈ U , i.e., Pw waits for the two conditions in

Case 1 to hold. IfTv < t, i.e., if Pw has higher priority (sinceTv is the timestamp attached

to Pw ’s 〈QUERY〉), Pv stores〈QUERY, Pu, t〉 to queueXv. Otherwise, ifTv > t, Pu has the

priority. Then in order to preempt the right to lock resources whichPv gave toPw, Pv sends

〈PREEMPT, Pv〉 to Pw, and waits forPw replying either〈RETURN〉 or 〈LOCK〉message (see

Cases 1 and 8), after storing the〈QUERY〉 messages issued byPu andPw to Xv. WhenPv again

needs to send〈PREEMPT〉 to Pw while waiting for a reply fromPw, v ignores it.

5. When processPv receives〈RETURN, Pw〉 message from processPw:

ProcessPv takes the〈QUERY, Px, t〉 message from the top of queueXv. It is the 〈QUERY〉
message which has the highest priority. ThenPv sends〈RESPONSE, Pv, Dv〉 to Px, and sets

Wv := Px andTv := t.

A.5. CORRECTNESS PROOF 99

6. When processPv receives〈LOCK, Pw, t, Sw〉 message from processPw:

ProcessPv updates its dataDv; it setsDv(r) := (Pw , t), for eachr ∈ Sw. Then it continues

(the algorithm fragment for) Case 5 ifXv is not empty.

7. When processPv receives〈UNLOCK, Pw, t, Sw〉 message from processPw:

ProcessPv updates its dataDv; it setsDv(r) := (⊥, t), for eachr ∈ Sw. If Wu 6= ⊥, then it

sends〈RESPONSE, Pv, Dv〉 message toWv. Otherwise, it continues Case 5 ifXv is not empty.

8. When processPw receives〈PREEMPT, Pv〉 message from processPv:

If it has sent back〈LOCK〉 message toPv, then it simply ignores the〈PREEMPT〉 message.

Otherwise, processPw sends back〈RETURN, Pw〉 message, and thenPw discardsDv which

was sent fromPv. That is, the response〈RESPONSE, Pv, Dv〉 is canceled by the〈PREEMPT〉
message. 2

Although in the above description ofAllocResource, 〈RESPONSE〉 carries all dataDv, it is clearly

reducible. At a process, sayPu, only the data on the resources inα(Pu) in Dv will be used.

A.5 Correctness Proof

In this section, we show the correctness of our algorithmAllocResource, provided that processes ac-

cessing resources release them within a finite time.

Theorem 15 Algorithm AllocResource guarantees Allocation Validity condition.

(Proof) This theorem holds since each processPu selects the resources from the candidate setAu,

which is a subset ofα(Pu). 2

In order to proceed the remaining properties, recall that a processPu wishing fork resources arbi-

trarily selectsk resources fromAu determined fromDv ’s for Pv ∈ q ∈ Qu, sends〈LOCK〉 message

carrying the names ofk resources to everyPv, and accesses them. On the other hand, processPv

updatesDv responding to the〈LOCK〉 message. If two processes which share resources receivedDv ’s

simultaneously, they could select the same resources and access them simultaneously. Our algorithm

guarantees that such situations never occur. We introduce the notion ofQ-regionto prove it formally.

A processPu requestingk resources sends〈QUERY〉 message to every memberPv of a quorum

q ∈ Qu, and collectsDv ’s until the two conditions of Case 1 hold. If a〈PREEMPT〉 message from

Pw ∈ q arrives in the meanwhile, it discardsDw and waits for newDw. Recall that receiving aDv

from everyPv ∈ q is a necessary condition, but is not sufficient. We say thatPu is in theQ-regionif Pu

has received aDv from everyPv ∈ q, but has neither sent〈LOCK〉 message nor received〈PREEMPT〉
message since then.

100APPENDIX A. LOCAL COTERIES AND A DISTRIBUTED RESOURCE ALLOCATION ALGORITHM

Lemma 30 LetPu andPv be any two processes such thatα(Pu) ∩ α(Pv) 6= ∅. ThenPu andPv are

never in their Q-regions simultaneously.

(Proof) Assume that there exists two processesPu, Pv such thatα(Pu)∩α(Pv) 6= ∅ andPu, Pv are in

their Q-regions at a time. LetPw be a process such thatPw is in both quorumsPu andPv chose. Note

that there exists suchPw sinceα(Pu) ∩ α(Pv) 6= ∅. Without loss of generality, assume thatPw sent

〈RESPONSE〉 to Pu first. By the definition of algorithm,Pw extracts the request fromPv after sending

〈RESPONSE〉 to Pu. By assumption,Pw sent〈RESPONSE〉 to Pv before〈LOCK〉 or 〈RETURN〉 is sent

from Pu. This action contradicts the definition of the algorithm. 2

Suppose that a resourcer has been allocated. IfPv didn’t knew this fact,Au could includer when

a processPv sentDv for the first time toPu, which implies thatr may be allocated to more than one

process since the candidate setAu is determined fromDv ’s. The next lemma guarantees that such

situations never occur.

Lemma 31 LetPu andPv be any two processes such thatr ∈ α(Pu)∩α(Pv) 6= ∅. Assume thatr has

been allocated toPu, andPv is now in its Q-region. Further, assume thatPu used quorumqu ∈ Qu for

its resource request andPv is using quorumqv ∈ Qv. By the definition of local coterie,qu ∩ qv 6= ∅.

Then for anyPw ∈ qu ∩ qv, Dw(r) = (Pu, t) for somet.

(Proof) SincePu is accessing a resourcer, it had sent〈LOCK〉 message to every process inqu when it

exits from Q-region and then it started accessingr. EveryPw ∈ qu∩qv sends a〈RESPONSE〉 message

to Pv after it receives a〈LOCK〉 message fromPu. WhenPw receives〈LOCK〉 from Pu, it updates its

local database such thatr is allocated toPu with its allocation time. WhenPw sends〈RESPONSE〉
message toPv, Pw knows thatr is already allocated. Thus,Dw(r) = (Pu, t) for somet. 2

Theorem 16 Algorithm AllocResource guarantees Mutual Exclusion condition.

(Proof) Assume that a resourcer ∈ α(Pu) ∩ α(Pv) is allocated to bothPu andPv simultaneously.

The proof is by induction. Mutual Exclusion condition holds at the initial state of the system since

no resources are allocated to processes. By lemma 30, any two processes sharing resources are not

in their Q-regions simultaneously. Without loss of generality, we assume thatPu leaves its Q-region

first by sending〈LOCK〉 message to allocater to Pu. Then,Pv can enter its Q-region only after all

processes inqu∩qv receiving〈LOCK〉 message fromPu, wherequ ∈ Qu (qv ∈ Qv) is the quorum that

Pu (Pv) chooses for response request. SincePu andPv share resources,qu ∩ qv is not empty. LetPw

be any process inqu ∩ qv. Then,Pw updates its database so thatDw(r) = (Pu, tu) holds for sometu
by receiving〈LOCK〉 message fromPu. By lemma 31, every〈RESPONSE〉 message sent toPu from

Pw contains dataDw(r) = (Pu, tu). ThereforePv cannot chooser; a contradiction. 2

Theorem 17 Algorithm AllocResource is deadlock free.

A.6. CONCLUDING REMARKS 101

(Proof) Since processes request all resources necessary when the resource access phase starts, we do

not consider deadlocks caused by nested requests. We consider the deadlocks at the query step.

Assume that a deadlock happens. Since the number of processes is finite, there exists a time such

that the number of processes being deadlocked does not increase afterwards. We consider what will

happen. Although there may exist processes which do not send and/or receive messages in general,

without loss of generality, we can assume that there are no such processes.

Let V ⊆ U be the set of processes being deadlock, and assume thatPu ∈ V is the process whose

timestamp attached to the〈QUERY〉 message is the smallest (i.e., highest priority) amongV . The

〈QUERY〉 message byPu will arrive to every process in a quorumq ∈ Qv in a finite time. Since the

logical clock monotonically increases, the timestamp ofPu’s 〈QUERY〉 will become the highest among

all processes. By the definition of the algorithm, each processPv in q behaves as follows. IfPv sent

〈RESPONSE〉message to a processPw ∈ U but it has not received the corresponding〈LOCK〉message,

thenPv sends〈PREEMPT〉 message toPw to switch the query right toPu. If Pv receives〈RETURN〉
message fromPw, it will send 〈RESPONSE〉 message toPu. Otherwise, it will send〈RESPONSE〉
message toPu, whenPw returns〈LOCK〉, sincePu’s 〈QUERY〉 has the highest priority. On the other

hand, processes that share resources withPu does cannot be in their Q-region, and hence, resources are

not allocated to them. Therefore, within a finite time, enough number of resources inα(Pu) become

free and the request byPu will be satisfied within a finite time, a contradiction. 2

Next theorem can be proved by a similar argument.

Theorem 18 Algorithm AllocResource is starvation free. 2

Now, we can conclude that the algorithmAllocResourcecorrectly solves the resource allocation

problem.

Theorem 19 Algorithm AllocResource solves the resource allocation problem. 2

A.6 Concluding Remarks

In this appendix, we have discussed the resource allocation problem, and proposed a distributed al-

gorithm. Unlike other conflict resolution problems such as the mutual exclusion and thek-mutual

exclusion problems, we consider cases in which processes may have access rights to different sets of

resources. In order to take into account the resource share relation of the system, we have introduced

a new concept called local coterie.

The number of messages necessary to exchange per resource request can be shown to be4|q|, where

q ∈ Qu in the best case and(7 + |α(Pu)|)|q|, whereq ∈ Qu in the worst case. In cases such that

each resource is shared by small number of processes, since the quorum size|q|, q ∈ Qu can be

102APPENDIX A. LOCAL COTERIES AND A DISTRIBUTED RESOURCE ALLOCATION ALGORITHM

small, our algorithm is suitable. The algorithm by Baldoni [Bal94b] requiresO(nM/(M+1)) message

per resource allocation, wheren is the number of processes andM is the number of resources. IfM

is large, the message complexity of Baldoni’s algorithm become approximatelyO(n), which is less

efficient than ours.

Finally, we would like to touch some future works. As a general advantage of quorum-based ap-

proach, our algorithm is robust against process and/or link failures; as far as at least one quorum

“survives”, there is a possibility that resource allocation can be achieved. However, discussing the

fault-tolerance aspect of this algorithm in detail is left as a future work. The local coterie construction

algorithm proposed in this appendix is simple. However, the local coteries produced are not always

good ones. Constructing better local coteries is also left as a future task.

Appendix B

Implementations of Distributed
k-Mutual Exclusion Algorithms

The examples of implementation of two distributedk-mutual exclusion algorithms is shown in this

appendix. We show the implementation of our algorithm proposed in Chapter 4 and the algorithm

proposed by Raymond [Ray89a].

Each program fragment of the implementation of distributedk-mutual exclusion algorithm shown

below is a part of the source code which is used in the simulation in Chapter 5 and listed without any

modifications.

The template of the implementation of algorithms is as follows:

Algorithm();

{
Initialization of Variables, etc.

while (TRUE){
SiteBehavior(); /* decides the behavior of the process */

Do active behavior decided by SiteBehavior().

if (no messages arrived)

continue;

Receive a message

Do passive behavior dependent on the received message.

}
}

103

104APPENDIX B. IMPLEMENTATIONS OF DISTRIBUTEDK-MUTUAL EXCLUSION ALGORITHMS

The procedureSiteBehavior() is a procedure to decide a behavior of a process. For instance, a

process is inNormal state, it decides to request a mutual exclusion with specified probability. Accord-

ing to such decision, process do its active behavior. If a mutual exclusion request happen, the process

sends request messages, for instance. After finishing active behavior, the process checks message ar-

rival. If a message is arrived, it read the message and process the message according to its message

type. This is the passive behavior.

B.1 Our Distributed k-Mutual Exclusion Algorithm using k-
Coterie

void
KakugawaProcess(k, p, quantum, cycle, tcs)

int k;
double p;
int quantum;
int cycle;
int tcs;

{
SiteID Y, Z;
int Sy, Sz, WaitingY, WaitingSy;
SiteSet Quorum, NextSites;
bool WaitingOkWait, NoMoreQuorum, WaitingTEmpty,

WaitingAnswer, WaitingExit;
Message Msg;
char msgbody[80];
static bool LexicoLess();
static bool SelectAQuorum(), GetConsensusP();
extern void SiteBehavior();

TransitNormalState();

WaitingOkWait = false;
NoMoreQuorum = false;
WaitingTEmpty = false;
WaitingAnswer = false;
WaitingExit = false;

SetSiteSetEmpty(Quorum);
SetSiteSetEmpty(NextSites);

for (;;){

/***
*** DECISION OF BEHAVIOR OF SITE
***/
SiteBehavior(k, p, quantum, cycle, tcs);

if (ExitMutexJob)
return;

if (EnterCSRequestHappen){
/**
** MUTEX REQUEST HAPPEN
**/

TransitRequestingState();
EnterCSRequestHappen = false;
RequestingCS = true;
MaxSeq = MaxSeq + 1;
Seq = MaxSeq;
SelectAQuorum(Quorum, Coterie, SetK, SetT);

L1:
SiteSetDifference(NextSites, Quorum, SetK);
SendRequestToSet(NextSites);
WaitingOkWait = true;

B.1. OUR DISTRIBUTEDK-MUTUAL EXCLUSION ALGORITHM USING K-COTERIE 105

}

if (RequestingCS
and (NoMoreQuorum or (WaitingOkWait and SiteSetEmptyP(NextSites)))){

WaitingOkWait = false;
if (GetConsensusP(SetK, Coterie)){

/**
** ENTER THE CS
**/

TransitInCriticalSectionState();
RequestingCS = false;
ExecCS = true;
NoMoreQuorum = false;

} else if (not NoMoreQuorum){
/**
** FAILED TO GET A QUORUM ... RETRY!
**/

if (SelectAQuorum(Quorum, Coterie, SetK, SetT)){
goto L1;

} else {
NoMoreQuorum = true;

}
}

}

if (ExitCSRequestHappen){
/**
** REQUEST OF EXITING THE CRITICAL SECTION HAPPEN
**/

ExitCSRequestHappen = false;
ExecCS = false;
TransitExitingCriticalSectionState();
SendReleaseToSet(SetK);
SetSiteSetEmpty(SetK);
WaitingTEmpty = true;

}

if (WaitingTEmpty and SiteSetEmptyP(SetT)){
/**
** EXIT THE CS
**/

WaitingTEmpty = false;
TransitNormalState();

}

if (not PendingMessage())
continue;

Msg = ReceiveMessage();
Y = SenderID(Msg);

sscanf(GetMessageString(Msg), MESSAGE_TYPE_FORMAT, msgbody, &Sy);
MaxSeq = max(MaxSeq, Sy);

/***
*** MUTUAL EXCLUSION REQUESTING PROCESS
***/
if (StrEqual(msgbody, OK_MESSAGE)){
/**
** OK MESSAGE (procedure ReceiptOK)
**/

if (WaitingOkWait){
SiteSetRemove(NextSites, Y);

}
if (RequestingCS){

SiteSetAdd(SetK, Y);
SiteSetRemove(SetT, Y);

} else {
SendRelease(Y);
SiteSetRemove(SetT, Y);

}

DisposeMessage(Msg);

106APPENDIX B. IMPLEMENTATIONS OF DISTRIBUTEDK-MUTUAL EXCLUSION ALGORITHMS

continue;
}

if (StrEqual(msgbody, WAIT_MESSAGE)){
/**
** WAIT MESSAGE (procedure ReceiptWAIT)
**/

if (WaitingOkWait){
SiteSetRemove(NextSites, Y);

}
SiteSetAdd(SetT, Y);

DisposeMessage(Msg);
continue;

}

if (StrEqual(msgbody, QUERY_MESSAGE)){
/**
** QUERY MESSAGE (Procedure ReceiptQuery)
**/

if (ExecCS && SiteSetMemberP(SetK, Y)){
SendAnswerNo(Y);

} else {
if (SiteSetMemberP(SetK, Y)){

SendAnswerRelease(Y);
SiteSetRemove(SetK, Y);
SiteSetAdd(SetT, Y);

} else {
/* already released before query arrives */
; /* ignore it */

}
}

DisposeMessage(Msg);
continue;

}

/***
*** TOKEN MANEGER PROCESS
***/
if (StrEqual(msgbody, REQUEST_MESSAGE)){
/**
** REQUEST MESSAGE (procedure ReceiptRequest)
**/

if (HaveToken){
SendOk(Y, Sy);
HaveToken = false;

} else {
if (LexicoLess(LatestTokenHolderSeqNo,LatestTokenHolderSiteID, Sy,Y)){

SendWait(Y);
EnPQueue(PQueue, Y,Sy);

} else {
if (not WaitingAnswer){
WaitingY = Y;
WaitingSy = Sy;
SendQuery(LatestTokenHolderSiteID);
WaitingAnswer = true;

} else {
if (LexicoLess(WaitingSy,WaitingY, Sy,Y)){

SendWait(Y);
EnPQueue(PQueue, Y,Sy);

} else {
SendWait(WaitingY);
EnPQueue(PQueue, WaitingY,WaitingSy);
WaitingY = Y;
WaitingSy = Sy;

}
}
/* See ReceiptANSWER_*** for following actions */

}
}

DisposeMessage(Msg);

B.1. OUR DISTRIBUTEDK-MUTUAL EXCLUSION ALGORITHM USING K-COTERIE 107

continue;
}

if (StrEqual(msgbody, RELEASE_MESSAGE)){
/**
** RELEASE MESSAGE (procedure ReceiptRELEASE)
**/

if (WaitingAnswer){
goto GetPseudoAnsRel;

}

if (PQueueEmptyP(PQueue)){
HaveToken = true;

} else {
Z = PQueueHeadItem(PQueue);
Sz = PQueueHeadPriority(PQueue);
DiscardPQueueHead(PQueue);
SendOk(Z, Sz);
HaveToken = false;

}

DisposeMessage(Msg);
continue;

}

if (StrEqual(msgbody, ANSWER_RELEASE_MESSAGE)){
/**
** ANSWER_RELEASE MESSAGE (Token Manager Process)
**/

if (WaitingAnswer){
/* continued action of ReceiptREQUEST */
EnPQueue(PQueue, LatestTokenHolderSiteID,LatestTokenHolderSeqNo);

GetPseudoAnsRel:
WaitingAnswer = false;
SendOk(WaitingY, WaitingSy);

} else {
SendFatalError("ANSWER_RELEASE arrived when !WaitingAnswer");

}

DisposeMessage(Msg);
continue;

}

if (StrEqual(msgbody, ANSWER_NO_MESSAGE)){
/**
** ANSWER_NO MESSAGE (Token Manager Process)
**/

if (WaitingAnswer){
WaitingAnswer = false;
/* continued action of ReceiptREQUEST */
SendWait(WaitingY);
EnPQueue(PQueue, WaitingY,WaitingSy);

} else {
SendFatalError("ANSWER_NO arrived when !WaitingAnswer");

}

DisposeMessage(Msg);
continue;

}

/* ignore bogus msg */
DisposeMessage(Msg);

}
}

/***
*** GetConsensusP() - Check if all sites in a quorum send OK or not.
***/

static bool
GetConsensusP(SetK, Coterie)

SiteSet SetK;
kcoterie Coterie;

108APPENDIX B. IMPLEMENTATIONS OF DISTRIBUTEDK-MUTUAL EXCLUSION ALGORITHMS

{
int q, qs, n, i;
int f;
SiteSet quorum;

n = GetTotalSites();
qs = HowManyQuorums(Coterie);

for (q = 0; q < qs; q++){
f = true;
NthQuorum(quorum, Coterie, q);
for (i = 0; i < n; i++){
if (SiteSetMemberP(quorum, i)){

if (!SiteSetMemberP(SetK, i)){
f = false;
break;

}
}

}
if (f)
return(true);

}
return(false);

}

static bool
LexicoLess(s1,x1, s2,x2)

int s1, s2;
SiteID x1, x2;

{
return((s1 < s2)

or ((s1 == s2) and (x1 < x2)));
}

B.2 Raymond’s Distributed k-Mutaul Exclusion Algorithm

void
RaymondProcess(k, p, quantum, cycle, tcs)

int k;
double p;
int quantum;
int cycle;
int tcs;

{
SiteID Z;
Message Msg;
SiteID Y;
int Sy;
int Count;
char msgbody[80];
int LexicoLess(), Not_In_CS();
void SendRequestMessage(), SendReplyMessage();
extern void SiteBehavior();

TransitNormalState();

for (;;){

/***
*** DECISION OF BEHAVIOR OF SITE
***/
SiteBehavior(k, p, quantum, cycle, tcs);

if (ExitMutexJob)
return;

if (EnterCSRequestHappen){

B.2. RAYMOND’S DISTRIBUTEDK-MUTAUL EXCLUSION ALGORITHM 109

/**
** MUTEX REQUEST HAPPEN
**/

TransitRequestingState();
EnterCSRequestHappen = false;
Requesting_CS = true;
Our_Seq = Max_Seq + 1;
for (Z = 1; Z <= N; Z++){

if (Z != me) {
SendRequestMessage(Z, Our_Seq);
Reply_Count[Z] = Reply_Count[Z] + 1;

}
}

}

if (ExitCSRequestHappen){
/***
*** EXIT THE CRITICAL SECTION
***/

ExitCSRequestHappen = false;
Executing_CS = false;
TransitExitingCriticalSectionState();
for (Z = 1; Z <= N; Z++){

if (Defer_Count[Z] != 0){
SendReplyMessage(Z, Defer_Count[Z]);
Defer_Count[Z] = 0;

}
}
TransitNormalState();

}

if (!PendingMessage())
continue;

Msg = ReceiveMessage();
Y = SenderID(Msg);
sscanf(GetMessageString(Msg), MESSAGE_TYPE_FORMAT, msgbody);

if (StrEqual(msgbody, REQUEST_MESSAGE)){
/**
** REQUEST MESSAGE
**/

sscanf(GetMessageString(Msg), REQUEST_FORMAT, msgbody, &Sy);
Max_Seq = max(Max_Seq, Sy);
if (Executing_CS

or (Requesting_CS and LexicoLess(Our_Seq,me, Sy,Y))){
Defer_Count[Y] = Defer_Count[Y] + 1;

} else {
SendReplyMessage(Y, 1);

}
DisposeMessage(Msg);
continue;

}

if (StrEqual(msgbody, REPLY_MESSAGE)){
/**
** REPLY MESSAGE
**/

sscanf(GetMessageString(Msg), REPLY_FORMAT, msgbody, &Sy, &Count);
Reply_Count[Y] = Reply_Count[Y] - Count;
if (Requesting_CS

and (Not_In_CS() >= N - k)){
/**
** ENTER THE CS
**/

Requesting_CS = false;
Executing_CS = true;
TransitInCriticalSectionState();

}
DisposeMessage(Msg);
continue;

}

110APPENDIX B. IMPLEMENTATIONS OF DISTRIBUTEDK-MUTUAL EXCLUSION ALGORITHMS

/* ignore bogus msg */
DisposeMessage(Msg);

}
}

int
Not_In_CS()
{

int Cnt;
SiteID Z;

Cnt = 0;
for (Z = 1; Z <= N; Z++)

if ((Z != me)
and (Reply_Count[Z] == 0))

Cnt = Cnt + 1;

return(Cnt);
}

B.3 The Behavior of a Process

The program fragment of a process behavior used in Chapter 5 is shown below. Functions whose name

end byHook are functions for collecting statistic data. For instance, a functionEnterCSHook()

is called when a process enters a critical section and the number of times a process enters a critical

section is counted by this function.

float _ProceedCSAt = 0.0;
float _TransitNormalAt = 0.0;
float _MutexRequestHappenedAt = 0.0;
static int InNormalStateTimeCounter = 0;

State MachineState = STATE_INITIAL;
bool EnterCSRequestHappen = false;
bool ExitCSRequestHappen = false;
bool ExitMutexJob = false;

extern void
EnterKMutexProcessHook(),
ExitKMutexProcessHook(),
SendHook(),
CSRequestHook(),
EnterCSHook(),
ExitCSHook(),
FinishMutexJobHook();

void
SiteBehavior(k, p, quantum, cycle, tcs)

int k;
double p;
int quantum;
int cycle;
int tcs;

{
float cval;

cval = CurrentClock();

if (cval >= (float)cycle){
ExitMutexJob = true;
return;

B.3. THE BEHAVIOR OF A PROCESS 111

}

switch (MachineState){
case STATE_INITIAL:
case STATE_NORMAL:

if (cval >= _TransitNormalAt + (float) InNormalStateTimeCounter){
InNormalStateTimeCounter += 1;
if (Random() < (float) p){

EnterCSRequestHappen = true;
}

}
break;

case STATE_REQUESTING:
/* do nothing */

break;
case STATE_IN_CRITICAL_SECTION:

if (cval >= (_ProceedCSAt + (float)tcs)){
ExitCSRequestHappen = true;

}
break;

case STATE_EXITING_CRITICAL_SECTION:
/* do nothing */
break;

default:
fprintf(stderr, "Cannot happen in SiteBehabiour()\n");
exit(-1);

}
}

void
TransitNormalState()
{

State oldstate;

_TransitNormalAt = CurrentClock();
InNormalStateTimeCounter = 0;
oldstate = MachineState;
if ((MachineState != STATE_EXITING_CRITICAL_SECTION)

&& (MachineState != STATE_INITIAL)){
fprintf(stderr, "bogus state transition to NORMAL state\n");
exit(-1);

}

MachineState = STATE_NORMAL;
if (oldstate == STATE_EXITING_CRITICAL_SECTION)

FinishMutexJobHook();
}

void
TransitRequestingState()
{

_MutexRequestHappenedAt = CurrentClock();
if (MachineState != STATE_NORMAL){

fprintf(stderr, "bogus state transition to REQUESTING state\n");
exit(-1);

}
MachineState = STATE_REQUESTING;
CSRequestHook();

}

void
TransitInCriticalSectionState()
{

_ProceedCSAt = CurrentClock();
if (MachineState != STATE_REQUESTING){

fprintf(stderr, "bogus state transition to InCriticalSection state\n");
exit(-1);

}
MachineState = STATE_IN_CRITICAL_SECTION;
EnterCSHook();

}

112APPENDIX B. IMPLEMENTATIONS OF DISTRIBUTEDK-MUTUAL EXCLUSION ALGORITHMS

void
TransitExitingCriticalSectionState()
{

if (MachineState != STATE_IN_CRITICAL_SECTION){
fprintf(stderr, "bogus state transition to InCriticalSection state\n");
exit(-1);

}
MachineState = STATE_EXITING_CRITICAL_SECTION;
ExitCSHook();

}

Bibliography

[AA89] Divyakant Agrawal and Amr El Abbadi. An efficient solution to the distributed mutual

exclusion problem. InPrinciples of Distributed Computing, pages 193–200, August 1989.

[Bal89] Henri E. Bal. Programming languages for distributed simulation computing systems.

ACM Computing Surveys, 21(3):261–322, September 1989.

[Bal94a] Roberto Baldoni.Mutual Exclusion in Distributed Systems. PhD thesis, Universita di

Roma “La Sapienza”, 1994.

[Bal94b] Roberto Baldoni. AnO(nM/(M+1)) distributed algorithm for the k-out of-m resources

allocation problem. InThe 14th International Conference on Distributed Computing Sys-

tems, pages 81–88, 1994.

[BC94] Roberto Baldoni and B. Ciciani. Distributed algorithms for multiple entries to a critical

section with priority.Information Processing Letters, 50:165–172, 1994.

[BGM87] Daniel Barbara and Hector Garcia-Molina. The reliability of voting mechanisms.IEEE

Transactions on Computers, C-36(10):1197–1208, October 1987.

[BP89] J.E. Burns and J. Pachl. Uniform self-stabilizing rings.ACM Transactions on Program-

ming Languages and Systems, 11(2):330–344, April 1989.

[BS91] Rajive L. Bagrodia and Chien-Chung Shen. Midas: Integrated design and simulation

of distributed systems.IEEE Transactions on Software Engineering, 17(18):1042–1058,

October 1991.

[Bur94] J. E. Burns. private communication. July 1994.

[CAA90] Shun Yan Cheung, Mustaque Ahamad, and Mostafa H. Ammar. Multi-dimensional vot-

ing: A general method for implementing synchronization in distributed systems. InPro-

ceedings of 10th International Conference of Distributed Computing Systems, pages 362–

369, 1990.

[CM84] K. M. Chandy and J. Misra. The drinking philosophers problem.ACM Transactions on

Programming Languages and Systems, 6(4):632–646, October 1984.

113

114 BIBLIOGRAPHY

[CR83] O. S. F. Carvalho and G. Roucairol. On mutual exclusion in computer networks.Com-

munications of the ACM, 26(2):146–147, February 1983.

[CTW92] Don Coppersmith, Prasad Tetali, and Peter Winkler. Collisions among random walks on

a graph.SIAM Journal of Discrete Mathematics, 6(3):363–374, August 1992.

[Dij68] E. W. Dijkstra. Programming Languages, chapter Sequential Communicating Processes.

Academic Press, N.Y., 1968.

[Dij74] E.W. Dijkstra. Self-stabilizing systems in spite of distributed control.Communications

of the ACM, 17(11):643–644, November 1974.

[Dij82] E.W. Dijkstra. Self-stabilization in spite of distributed control. InReprinted in Selected

Writing on Computing: A Personal Perspective, pages 41–46. Springer-Verlag, Berlin,

1982.

[DIM90] S. Dolev, Amos Israeli, and S. Moran. Self stabilization of dynamic systems assuming

only read/write atomicity. InProceedings of the 9th ACM Symposium on Principles of

Distributed Computing, pages 103–117. ACM, 1990.

[DIM91] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Uniform dynamic self-stabilizing leader

election.Lecture Notes for Computer Science 579, pages 167–180, 1991.

[DIM93] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Self stabilization of dynamic systems

assuming only read/write atomicity.Distributed Computing, 7:3–16, 1993.

[FDG94] Mitchell Flatebo, Ajoy Kumar Datta, and Sukumar Ghosh.Readings in Distributed Com-

puting Systems, chapter Self-Stabilization in Distributed Systems, pages 100–114. IEEE

Computer Society Press, Los Vaqueros Circle, Los Alamos, CA, USA, 1994.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed

consensus with one faulty process.Journal of the ACM, 32(2):374–382, April 1985.

[FYA91] Satoshi Fujita, Masafumi Yamashita, and Tadashi Ae. A non trivial solution of the dis-

tributedk-mutual exclusion problem.ISA ’91 Algorithms LNCS 557, 1991.

[Gho91] Sukumar Ghosh. Binary self-stabilization in distributed systems.Information Processing

Letters, 40(3):153–159, November 1991.

[Gif79] D. K. Gifford. Weighted voting for replicated data. InProceedings of 7th Symposium on

Operating Systems, pages 150–162. ACM, 1979.

[GMB85] Hector Garcia-Molina and Daniel Barbara. How to assign votes in a distributed system.

Journal of the ACM, 32(4):841–860, October 1985.

BIBLIOGRAPHY 115

[Hag90] Ken’ichi Hagihara. Distributed algorithms.Journal of Information Processing Society of

Japan, 31(9):1245–1256, September 1990. (in Japanese).

[Hag93] Ken’ichi Hagihara. Algorithms for fault-tolerant distributed systems.Journal of Infor-

mation Processing Society of Japan, 34(11):1336–1340, November 1993. (in Japanese).

[Her90] Ted Herman. Probabilistic self-stabilization.Information Processing Letters, 35(2):63–

67, June 1990.

[Hua93] Shing-Tsaan Huang. Leader election in uniform rings.ACM Transactions on Program-

ming Languages and Systems, 15(3):563–573, July 1993.

[IJ90] Amos Israeli and Marc Jalfon. Token management schemes and random walks yield self

stabilizing mutual exclusion. InProceedings of the 9th ACM Symposium on Principles of

Distributed Computing, pages 119–131. ACM, 1990.

[IK91] Toshihide Ibaraki and Tiko Kameda. Theory of coteries. InProc. 3rd Symp. on Parallel

and Distributed Systems, pages 150–157, 1991.

[Kum91] Akhil Kumar. Hierarchical quorum consensus: A new algorithm for managing replicated

data.IEEE Transactions on Computers, 40(9):996–1004, September 1991.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.Com-

munications of the ACM, 21(7):558–565, July 1978.

[LS92] C. Lin and J. Simon. Observing self-stabilization. InProceedings of the 11th ACM

Symposium on Principles of Distributed Computing, pages 113–123. ACM, 1992.

[MA93] Yoshifumi Manabe and Shigemi Aoyagi. A distributedk-mutual exclusion algorithm

usingk-coterie.IEICE Japan, SIG Computation Record, COMP91-13:11–18, May 1993.

(in Japanese).

[Mae85] Mamoru Maekawa. A
√

N algorithm for mutual exclusion in decentralized systems.ACM

Transactions on Computer Systems, 3(2):145–159, March 1985.

[Mis86] Jayadev Misra. Distributed discrete-event simulation.ACM Computing Surveys,

18(1):39–65, March 1986.

[Miy94] Hidenori Miyamoto. A study on quorum based approach for solving the anonymous

resource conflict resolution problem. Master’s thesis, Hiroshima University, February

1994.

[MLR91] Masaaki Mizuno, Mitchell L.Neilsen, and Raghavendra Rao. A token based distributed

mutual exclusion algorithm based on quorum agreements. InProc. of 11th International

Conference on Distributed Computing Systems, pages 361–368, May 1991.

116 BIBLIOGRAPHY

[MYKC94] Shyan Ming Yuan and Her Kun Chang. Comments on “availability ofk-coterie”. IEEE

Transactions on Computers, 43(12):1457, December 1994.

[NM92] Mitchell L. Neilsen and Masaaki Mizuno. Coterie join algorithm.IEEE Transactions on

Parallel and Distributed Systems, 3(5):582–590, 1992.

[NM94] Nitchell L. Neilsen and Masaaki Mizuno. Nondominatedk-coteries for multiple mutual

exclusion.Information Processing Letters, 50:247–252, 1994.

[NMR92] Mitchell L. Neilsen, Masaaki Mizuno, and Michel Raynal. A general method to define

quorums. InProceedings of 12th International Conference of Distributed Computing

Systems, pages 657–664, 1992.

[NMT92] Naoki Nishikawa, Toshimitsu Masuzawa, and Nobuki Tokura. Uniform self-stabilizing

algorithm for mutual exclusion.IEICE Japan, J75-D-I(4):201–209, April 1992. (in

Japanese).

[RA81] Glenn Ricart and Ashok K. Agrawala. An optimal algorithm for mutual exclusion in

computer network.Communications of the ACM, 24(1):9–17, January 1981.

[RA83] Glenn Ricart and Ashok K. Agrawala. Author’s response to ‘On mutual exclusion in com-

puter networks’ by Carvalho and Roucairol.Communications of the ACM, 26(2):147–

148, February 1983.

[Ray86] Michel Raynal.Algorithms for Mutual Exclusion. North Oxford Academic, 1886. (Trans-

lated by D. Beeson).

[Ray89a] Kerry Raymond. A distributed algorithm for multiple entries to a critical section.Infor-

mation Processing Letters, 30:189–193, February 1989.

[Ray89b] Kerry Raymond. A tree-based algorithm for distributed mutual exclusion.ACM Trans-

actions on Computer Systems, 7(1):61–77, February 1989.

[Ray91a] Michel Raynal. A distributed solution to thek-out of-m resources allocation problem. In

Lecture Notes in Computer Science 497, pages 599–609. Springer-Verlag, 1991.

[Ray91b] Michel Raynal. A simple taxonomy for distributed mutual exclusion algorithms.ACM

Operating Systems Review, 25(2):47–51, 1991.

[San87] Beverly A. Sanders. The information structure of mutual exclusion algorithms.ACM

Transactions on Computer Systems, 5(3):284–299, August 1987.

[Sch93] Marco Schneider. Self-stabilization.ACM Computing Surveys, 25(1):45–67, March 1993.

[SG92] Abraham Silberchatz and Peter B. Galvin.Operating Systems Concepts Fourth Edition.

Addison-Wesley, Reading, MA, 1992.

BIBLIOGRAPHY 117

[Sin91] Mukesh Singhal. A class of deadlock-free maekawa-type algorithms for mutual exclusion

in distributed systems.Distributed Computing, pages 131–138, April 1991.

[SK85] Ichiro Suzuki and Tadao Kasami. A distributed mutual exclusion algorithm.ACM Trans-

actions on Computer Systems, 3(4):344–349, November 1985.

[SM92] R. Satyanarayanan and D. R. Muthukrishnan. A note on Raymond’s tree based algorithm

for distributed mutual exclusion.Information Processing Letters, 43(5):249–255, October

1992.

[SR92] Pradip K. Srimani and Rachamallu L.N. Reddy. Another distributed algorithm for mul-

tiple entries to a critical section.Information Processing Letters, 41(1):51–57, January

1992.

[SS94] Mukesh Singhal and Niranjan G. Shivaratri.Advanced Concepts in Operating Systems —

distributed, database, and multiprocessor operating systems. McGraw-Hill, 1994.

[STHK93] Jehn-Ruey Jiang Shing-Tsaan Huang and Yu-Chen Kuo.k-coteries for fault-tolerantk en-

tries to a critical section. InProceedings of 13th International Conference of Distributed

Computing Systems, pages 362–369, 1993.

[Sun90] Sun Microsystems, INC.Network Programming Guide, part number: 800-3850-10 revi-

sion a of 27 edition, 1990.

[Tan95] Andrew S. Tanenbaum.Distributed Operating Systems. Prentice Hall, 1995.

[Tau91] Gadi Taubenfeld. On the nonexistence of resilient consensus protocols.Information

Processing Letters, 37:285–289, March 1991.

[Tho79] R. H. Thomas. A majority consensus approach to concurrency control for multiple copy

databases.ACM Transactions on Database Systems, 4(2), 1979.

[Tok89] Nobuki Tokura. A tool for distributed algorithm simulation.Journal of Information

Processing Society of Japan, 30(4):380–386, April 1989.

[Yam93] Masafumi Yamashita. The distributed mutual exclusion problem and coteries.Journal

of Information Processing Society of Japan, 34(11):1350–1357, November 1993. (in

Japanese).

