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Abstract

The mutual exclusion problem is a problem of arbitrating access conflicts for resources. The prob-
lem has been considered as a fundamental problem in computer science and extensively studied from
the first minute operating systems started providing multi-tasking or multi-programming feature. Re-
cently, a large number of computers are connected to a computer network. Such a system is called
a distributed systemin a distributed system, several processes do their jobs by communicating with
other processes on remote computers. When they share resources, processes may request the same
resource at the same time. If the resource requires mutually exclusive access, then some regulation is
needed to access it. Thistlee distributed mutual exclusion problem

Most of previous works for the distributed mutual exclusion problem treat the case in which only one
resource exists in a distributed system. This model may be suitable for modeling, e.g., access control
of a distributed database. However, there are other cases in which more than one identical resources
exist in a distributed system. The problem of arbitrating idenficasources is callethe distributed
k-mutual exclusion problem

Distributed systems consist of many components such as computers and communication links. In
general, the probability that all components are simultaneously in operational is smaller than the prob-
ability that a component is in operational. This implies that when we design a distributed system, we
should expect that some components may fail. Fault tolerance is therefore regarded as one of the most
important issues in designing distributed systems. Unlike parallel computers, distributed systems are
loosely coupled, so that it is easy to add redundant components to increase the availability of distrib-
uted systems in such a way that even if several computers and/or communication links may fail, the
rest of system is still in operational and alive components work correctly.

This dissertation investigates the distributeanutual exclusion problems. We discuss two ap-
proachesithe coterie approackandthe self-stabilization approachin Chapter 1, we give a general
introduction to the distributed-mutual exclusion problem, and address the objectives of this disserta-
tion.

Part | contains the coterie approach. The concegbtérieis introduced to reduce the number of
messages a process to enter a critical section and to increase the availability of systems. In Chapter
2, we give an introduction to the coterie-based distributed mutual exclusion and introduce the concept
of k-coterieas an extension of coterie. In Chapter 3, the availabiliti-@bterie is investigated. In
Chapter 4, a distributed-mutual exclusion algorithm usingrcoterie is proposed and its correctness
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is proven. In Chapter 5, to demonstrate the efficiency of the proposed algorithm, computer simulations
of the proposed algorithm are done.

In Part 1l, the self-stabilization approach is discussed. A self-stabilizing system is a system which
converges to a legitimate (stable) system state without centralized control even if any transient errors
happen. In Chapter 6, we give an introduction to the self-stabilization approach. Formal definitions
of computational models are described. In Chapter 7 we propose several self-stabilizing mutual ex-
clusin algorithms. Forst, we propose a self-stabiliZiagiutual exclusion algorithm for unidirectional
and bidirectional ring networks whose sizes are prime. The proposed algorithm does not require pro-
cess identifiers, i.e., it is a uniform system. Thus, it works for anonymous ring networks. Next, we
investigate the self-stabilizing 1-mutual exclusion problem as a special case of the self-stakilizing
mutual exclusion problem. We propose a randomized self-stabilizing 1-mutual exclusion algorithm
for unidirectional ring networks.

In Chapter 8, we summlize the results in this dissertation and discuss future tasks.
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Chapter 1

Introduction

1.1 The Mutual Exclusion Problem

The mutual exclusion problem first arised when the concept of concurrent processes was introduced
in operating systems. When more than one processes share memory cells, undesirable situations may
happen: Suppose that two procesBeand P, which share a variable, say wish to increment: by

one. To increment the value of a process loads the valueminto a register in CPU, increments the

value of the register by one, and then stores it backintlf P, starts executing the above procedure
after P; finishes its execution, the result is correct, i.e., the valueisfincremented by two. However,

what if their executions are interleaved? Consider, for example, the following interleaved execution
sequenceP; loadsz, P; increments the registeP, loadsz, P, increments the registeP, stores the

register intar, and thenP; stores the register inte. x is incremented by only one !

To guarantee such an undesirable situation does not happen, the concefitalfsectionis in-
troduced. A program text can be partitioned into two kinds of sections: sections in which there are
no accesses to shared resources (e.g., shared variables) and sections in which shared resources are ac-
cessed. The latter sections are caltetical sectionsor critical regions Then it is easy to see that by
synchronizing processes in such a way that at most one of them is in a critical section, we can achieve
one aim of avoiding undesirable situations. For instance, by encapsulating the three steps of increment
procedure, (1) loading into a register, (2) incrementing the value of register, and (3) storing the value
of the register, in a critical section, we always get a correct result.

To make executions of critical sections mutually exclusive, a process wishing to enter a critical
section must issue an operation to get a permission. Dijkstra introduced an abstract data type called
semaphoren [Dij68]. To enter a critical section, a process must issu® @peration. If there is a
process being in a critical section at the time instant, the execution of the process is suspended until no
process is in a critical section. When a process exits a critical section, it issuegaation to permit
another process to enter a critical secftdlodern CPUs suppoR andV or similar instructions (e.g.,

1To speak rigidly, operationB andV are defined as follows: When a process perforni @peration, it executes next
instruction (i.e., it enters in a critical section) if there is no processes in a critical section. Otherwise, it is blocked until no
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16 CHAPTER 1. INTRODUCTION

test-and-seinstruction) in order to solve the mutual exclusion problem.
In this dissertation, we discuss the mutual exclusion problem in a computer network (not in a single
computer).

1.2 Distributed Systems

Recently, a large number of computers are connected to a computer network. A set of computers
connected by a set of communication links is calletisiributed systemWe characterize distributed
systems by the absence of shared memory. In a distributed system, processes on a computer do their
tasks with other processes on remote computers. To achieve cooperative tasks (or competitive tasks),
processes must communicate with other processes via communication links since there is no shared
memory.

The following motivates distributed systems[Hag90, Hag93]:

¢ High performance — Since the system consists of several computers, independent tasks can be
processed in parallel. Load balancing is easy.

e Distribution of users — When users of the system are geometrically distributed, it is natural to
process tasks distributedly.

e Extensiveness— In general, addition of computers and communication links can be done easily
with small modification of the current system. Replacement of computers and communication
links is also easy. This property comes from the nature that distributed systems are loosely
coupled.

e Fault-tolerance — A centralized system cannot provide services when the central machine
stops by failure. Distributed systems may provide services if there are several alive components.

Distributed systems have many advantages compared with centralized systems. However, designing
distributed algorithms to control distributed systems is by no means easy because of the following
reasons: Computers must send/receive messages to other computers to get enough information to do
their tasks. Messages are delivered with delay and therefore in principle there is no way to capture
the global state of the system. In addition, there is no process which controls the entire distributed
system. Therefore, to achieve fault-tolerance, algorithms must consider failures such as process stops
and message losts.

1.3 The Distributed Mutual Exclusion Problem

When processes in a distributed system share a resource which must be accessed exclusively, the access
to the resource must be controlled as in the case of concurrent processes in stand-alone operating

processes are in a critical section. A process perforM®peration when it exits from critical section. The operating system
unblocks a process after a performance of@peration.
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systems. To enter a critical section, a process must assure that there is no process which is being in a
critical section in the distributed system.

Many algorithms have been proposed to solve the distributed mutual exclusion problem. They are
classified into two types[Ray91b]:

e Permission-based principle— A processP wising to enter a critical section requests some
other processes to permit it to enter a critical section. If a permission is given from each process
P is asking,P can enter the critical section.

e Token-based principle— There is an object calledtakenin a distributed system and it travels
among processes. A process can enter a critical section while it is holding the token. The mutual
exclusion is guaranteed because there is only one token in the system and there are no two
processes having a token at the same time.

Several algorithms are surveyed in Chapter 2.

Consider a distributed system having two magnetic tape driversd B. Suppose that two processes
P and@ wish to use two magnetic tape drives. In such a case, we must be careful to avoid the state in
which P reservesd and(@ reserves3, since bothP and(@ are stuck forever if both of them request
another tape driveDeadlockis the terminology to denote such situations.

We also avoid a starvation situation in which a request is not satisfied forever (i.e, a magnetic tape
drive cannot be allocated forever).

In designing a mutual exclusion algorithm, guaranteeingittedlock free propertgnd thestarva-
tion free propertyare important issues. Note that once a deadlock happen, it cannot be solved; while
starvation can.

1.4 The Distributed £-Mutual Exclusion Problem

In the example of a distributed database described above, only one item is shared by processes. How-
ever, there are systems such thadlentical resources are shared by processes.

For example, consider a Ethernet local area network and many computers executing processes are
connected to it. Since Ethernet is a CSMA/CD (Carrier Sense Multiple Access with Collision Detect)
type local area network, the performance of the network becomes bad suddenly when computers send
packets frequently. To avoid such situation, a distributedutual exclusion can be applied. The
bandwidth of a network can be considered as resources and a program fragment in which a process
sends a large amount of data via network can be considered as a critical section. When a process
wishes to send data, it must enter a critical section. Then the total amount of traffic of a network can
be controlled.

The simplest way of solving this problem is to solve the 1-mutual exclusion problem for each re-
source, i.e., we distinguish each resource by labeling a unique name and provide a mutual exclusion
algorithm for each resource. This is a simple solution, however, a process must choose which resource
it wish to use even if thé resources are identical. By this solution, many processes may be waiting
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for a resource even if there are free resources. This motivates a study of distkibutgdal exclusion
algorithms. The distributed-mutual exclusion problem is the main theme of this dissertation.

1.5 Fault Tolerance of Distributed Systems

Fault tolerance is an important issue and it is desirable that distributed systems can tolerate from any
failures. But implementations of fault tolerance are difficult or sometimes impossible. For instance,
it is shown that there is no consensus algorithm in totally asynchronous system even if the number of
faulty process is one [FLP85, Tau91]. Thus, it is common to classify the failures into several classes
and fault tolerant systems are discussed by assuming failure classes.

For instance, failures are classified as follows [Hag90, Hag93]:

e Crash failure — Processes (or links) completely stop when an error occur. If a failure occurs,
it never send any message.

e Send-omission failure— Messages may be lost when sending.
e General-omission failure— Messages may be lost when sending and/or receiving.

e Byzantine failure — Processes may send strange messages to cheat other processes.

Although several computers and/or links may stop by power down and the value of memory cells
or messages on links may be lost, they have complete functionality and may work correctly again if
power is supply recovers. Such failures are caltadsient failures

A system which tolerates against any transient failures is callsglfestabilizing systerand was
first discussed by Dijkstra [Dij74]. A self-stabilizing system is a system which converges without
centralized control to a legitimate (stable) system state even if any transient errors occur. In the latter
half of this dissertation, we propose several self-stabilizing mutual exclusion algorithms.

1.6 Organization of This Dissertation

This dissertation consists of two parts. We discuss the coterie approach of the distkibatedal
exclusion problem in Part I. The self-stabilization approach is discussed in Part Il. Part | includes
Chapter 2 to Chapter 5 and Part Il includes Chapter 6 to Chapter 7.

In Chapter 2, we discuss the coterie approach. Previous works for distributed mutual exclusion are
also reviewed in this chapter. Coterie is a set of process groups such that a process wishing to use
a resource must get permission from all processes of a process group. We propose a concept called
k-coterie as an extension of coterie. In Chapter 3, the availability of coterie is analyzed. Intuitively, the
availability is the probability that at least one process can use a resource in spite of process and/or link
failures. Since there exisksresources, the definition of availability is not enough. We introduce a new
measure callefk, r)-availability. The(k, r)-availability is the probability that at leastprocesses can
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use resources at a time.df=r = 1, the(k, r)-availability is the conventional availability. We show a
necessary and a sufficient conditions for a class of coteries daleajority coterie to be optimal in the
sense ofk, r)-availability. In Chapter 4, we propose a distribufedhutual exclusion algorithm using

a k-coterie and its correctness is shown. To demonstrate the efficiency of the proposed algorithm, the
average message complexity of the algorithm is examined by computer simulations. The simulation
results is shown in Chapter 5. In the simulation, each process is executed on different workstations
connected to a local area network.

In Chapter 6, we discuss the self-stabilization approach. A self-stabilizing algorithm is an algorithm
which tolerates from any transient failures and therefore, initialization is not necessary for the system;
it converges to a stable state automatically. In this dissertation, we consider a uniform self-stabilizing
systems on ring networks. A system is calledformif all processes are identical and do not have pro-
cess identifiers. In Chapter 7, we propose several self-stabilizing mutual exclusion algorithms. First,
we propose a self-stabilizing-mutual exclusion algorithm on rings whose sizes are primes. Next,
we consider the self-stabilizing 1-mutual exclusion problem as a special case. In [BP89], Burns and
Pachl showed that there exists no uniform deterministic self-stabilizing 1-mutual exclusion algorithm
if the number of processes on a ring is composite. We show that there exists a uniform probabilistic
self-stabilizing mutual exclusion algorithm when the number of processes is composite.

In Chapter 8, we summarize the results in this dissertation and present open problems and future
tasks.
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Chapter 2

The Coterie Approach for the
Distributed k-Mutual Exclusion

In Part I, we investigate the distributédmutual exclusion problem by taking the coterie approach.
First, we discuss the distributed mutual exclusion (i.e., the distributed 1-mutual exclusion) based on
coterie and survey previous works. Then, we motivate a study of the distributadual exclusion.
Finally, we introduce a conceptcoterie to solve the distributédmutual exclusion problem.

2.1 Previous Works for the Distributed 1-Mutual Exclusion

The distributed 1-mutual exclusion problem is one of the fundamental distributed problems and many
algorithms to solve the problem have been proposed. In this section, we survey previous works of the
distributed 1-mutual exclusion.

2.1.1 The first distributed 1-mutual exclusion algorithm by Lamport

The first distributed mutual exclusion algorithm is proposed by Lamport [Lam78]. To guarantee mutual
exclusion, no deadlock, and no starvation, distributed mutual exclusion algorithms must have some
arbitration mechanism. To this end, he proposéddgical clockin totally asynchronous distributed
systems. A logical clock is defined as follows [Lam78]:

e Initially, a logical clock of every process is zero.

e When an internal (local) event (e.g., update of a variable) occurs at a prBeadsgical clock
of P is incremented by one.

e When a proces®; sends a messadé to Py, the value ofP;’s logical clock, say, is attached
to M, i.e., a pair(M, cs) is sent. WherP; receives a message, it retrieves a clock valu®.of
(= ¢s) and compares with its own logical cloek. Then,P;’s logical clock is updated by taking
maximum of these two logical clocks. i.e4 := max(cg, ¢s).

23
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Note that this logical time has no relation to the physical time.

The priority among mutual exclusion requests is defined by a pair of a logical time at which a request
is issued and a process identifier of a requesting process. The pair of a logical time and a process
identifier is call @imestampand it is assumed that every request message contains a timestamp. Since
total ordering is defined on timestamps, processes can tell which request has the highest priority. Thus,
by usage of timestamps, his algorithm avoids starvations and deadlocks.

In his algorithm, a process which enters a critical section sends request messages to all the other
processes. When a process receives a request message, the request is put into a priority queue and
it sends a reply message to the requesting process. The requesting process enters a critical section if
it receives reply messages from the other processes and its request is the highest among items is its
priority queue. To exit from a critical section, it sends a release message to the other processes and
deletes its request from its queue. A process receiving a release message deletes the corresponding
item from the priority queue. For every invocation of a mutual exclusion, it must send messages to
the other processes in a distributed system. So, this algorithm is based wmathliemousconsensus
method and require3(n — 1) messages per invocation of a mutual exclusion. If a process stops by
a failure then other alive processes cannot enter their critical sections; thus it is not a good algorithm
from the view point of the fault tolerance.

Ricart and Agrawala proposed an improved algorithm [RA81] which reqgifes- 1) messages
per invocation of mutual exclusion, but it sends a request message to every process like Lamport’s
algorithm. Carvalho and Roucairol further improved the algorithm to reduce the number of messages
[CR83, RA83].

2.1.2 Majority and voting

In Lamport’s algorithm and Ricart and Agrawala’s algorithm, a process must communicate with all
processes. To guarantee mutual exclusion, however, the unanimous consensus method is not necessary.
Thomas proposed theajority consensus algorithm to guarantee mutual exclusion [Tho79]. A process
which enters a critical section must get permissions from a majority of all processes. Assuming that
more than a half processes are alive, alive processes can enter their critical sections, i.e., they can
continue their tasks even if at most half of the system components stop. This algorithm is definitely
more resilient than Lamport’s algorithm [Lam78].

As a generalization of the majority method, Gifford proposedwieéghted votindGif79]. Each
process is assigned a number of votes. A process must collect a majority of total votes to enter a
critical section. Note that the majority method by Thomas is a special case when each process has one
vote. Each computer has different reliability, in general. If more votes are assigned to more reliable
computers then it is expected that the availability of system increases. (Recall that the availability of
mutual exclusion is the probability that at least one process in a distributed system can enter a critical
section.) In addition, the number of processes that a process must exchange messages on an invocation
of a mutual exclusion can be controlled by changing vote assignments. As an extension of the weighted
voting, In [CAA90], Cheung, Ahamad and Ammar proposed the multi-dimensional voting method as
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an extension of the voting method. The vote assigned to a process is a multi-dimensional vector.

2.1.3 Coterie

To decrease the number of messages per mutual exclusion invocation and to increase the availability,
the concept ototerieis proposed by Garcia-Molina and Barbara [GMB85]. The definition of coterie
is as follows.

Definition 1 LetU be the set of all processes. A get= {Q1,Q2, ..., Qm} # 0 is a coterieif and
only if the following conditions hold:

1. Non-emptiness: For eachQ; # 0.
2. Intersection property: Foreachj, Q; N Q; # 0.
3. Minimality:  For eachi, j (i # j), Q: € @;.

Elements of a coterie is callegiorums O

A process wishing to enter a critical section sends a request message to every process in a quorum
Q € C. Ifit can get permission from every processes in a quorum, it can enter a critical section. Mutual
exclusion is guaranteed because every two quorums has non-empty intersection and processes in an
intersection of quorums serve as an arbiter of mutual exclusion requests. It is shown that (1) every
voting assignment in the weighted voting scheme can be expressed in terms of coterie and (2) there
exists a coterie which cannot be expressed in terms of the vote assignment{GMB85]. Therefore, the
majority method [Tho79] and the centralized method are also expressed in terms of coterie. Coterie is
thus more powerful than the vote assignment method.

Garcia-Molina and Barbara [GMB85] proposed the concigmhinationof coteries.

Definition 2 Let Q andR be coteriesQ dominatesR if and only if a condition
VReRIQ € QQ CRINQ#TR
holds. A coterieQ is anon-dominated coteri€and only if there is no coterie which dominat@s
A coterie @ which dominatesR is better tharR because of the following reasons:

e Availability : Suppose that a set of alive processeS.isBy definition of domination, if there
existsR € R andR C S then there exist§® € Q and@ C S. Intuitively, if a system usin@R is
operational at the presence of failures then a system @is@lso operational, but the opposite
is not always true.
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e Message complexity Assume that a system us®& and that a process communicates with
processes itk € R. By definition of domination, there is a quorumdhe Q such that) C R,
which implies that a process can ugenstead ofR if a system use€. Because&) C R, the
number of messages a process must send is smaller than or equal.

Several algorithms using coterie has been proposed. Maekawa proposed an algorithm using coterie
constructed from finite projective planes. The size of quorums of the coterie is approxigatelye
showed that coteries based on finite projective planes are the optimal coteries in the sense that each
process has equal amount of responsibility to the mutual exclusion control. A process wishing to enter
a critical section sends a request message to every process in a quorum. It waits until permission is
granted by all process in the quorum. After exiting a critical section, it releases the permission. To
avoid deadlock, permissions are preempted according to the priority defined by Lamport [Lam78].
(Sanders pointed out that Maekawa'’s algorithm may cause deadlocks [San87].) Each process requires
O(y/n) messages per mutual exclusion invocation because the size of quoryfms Binghal pro-
posed a Maekawa-type deadlock free algorithm without additional messages for deadlock resolution
[Sin91].

Not only mutual exclusion algorithms but also properties of coteries and construction methods are
investigated by many researchers.

In [AA89], Agrawal and Abbadi proposed a coterie constructed by binary tree. The size of quorums
of a coterie varies frortog n to ("7“1 . Kumar proposed a hierarchical quorum consensus and a coterie
with multilevel hierarchies whose quorum sizen$%3 [Kum91]. Ibaraki and Kameda investigated
properties of coteries from the point of view of boolean functions [IK91] and showed a characterization
of non-dominated coteries. Neilsen, Mizuno and Raynal proposed a method for constructing a complex
coterie from simple coteries [NM92, NMR92].

2.1.4 Study on fault tolerance

Barbara and Garcia-Molina discussed the availability of mutual exclusion [BGM87]. They showed
several heuristics for vote assignment to increase the availability of mutual exclusion for arbitrary
network topology. When the network topology is complete, the communication links never fail, and
reliability of each process ig > 0.5, then the majority method [Tho79] is shown to be optimal in the
sense of availability. Rangarajan and Tripathi proposed a variation of finite projective planes based
coteries to increase the availability. The quorum size of the cotegi@ kg n.

2.1.5 Token-based algorithms

The above algorithms are based on he permission-based principle, i.e., a process can enter its critical
section only if certain permission is granted.

Algorithms based on the token-based principle have also been proposed. Suzuki and Kasami pro-
posed an algorithm which requires at masiessages per invocation on mutual exclusion [SK85].
An imaginary object calletbkenis provided in the system and a process which holding the token is
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the process which has the privilege to enter its critical section. If a process holds a token then it is
not necessary to send any request messages. Otherwise, it sends a request message to every process.
In their algorithm, the sequence number is used to guarantee deadlock freedom and starvation free-
dom. Suzuki and Kasami also showed an algorithm with bounded sequence number. The algorithm
proposed by Ricart and Agrawala [RA81] also uses the sequence number but the value is unbounded.
Raymond proposed another token-based algorithm [Ray89b]. Her algorithm dynamically maintains
a directed spanning tree of a network. The direction of an edge of a spanning tree indicates the direction
of a token. A request message is forwarded along directed edges of a spanning tree. This method
does not require a process sending its request message to all processes. The number of messages
required per invocation of mutual exclusion depends on the topology of tree but typitady »n)
under light demands of mutual exclusions. In the case that the demands of mutual exclusions are
heavy, approximately four messages are necessary. Satyanarayanan and Muthukrishnan proposed a
modification of Raymond’s algorithm such that it can provide least executed criterion as a fairness
policy of mutual exclusion by processes [SM92].
Mizuno, Neilsen and Rao proposed an algorithm based on token-based principle using coteries
[MLR91]. A process which is requesting to enter a critical section sends a request message to a
process of a quorum of a coterie.

2.2 Previous Works for the Distributed k-Mutual Exclusion

In this section, we review previous works for the distributeahutual exclusion problem. An algorithm

for distributedk-mutual exclusion can be constructed frérmutual exclusion algorithms. That is, we

namek resources distinct names and a process wishing to use a resource chooses a resource name
amongk resources and issue a request for the mutual exclusion algorithm for the resource. This is a
simple solution but has a drawback. Suppose that every process specifies the same resource, they must
wait a long time even if there are free resources. By this reason, several distébutgtial exclusion
algorithms have been proposed.

The first distributedc-mutual exclusion algorithm is proposed by Raymond [Ray89a]. Her algo-
rithm is a modification of Ricart and Agrawala’s distributed 1-mutual exclusion algorithm [RA81].
According to her algorithm, a process must send a request message to every process in a distributed
system. It can enter a critical section if it receives- k reply messages, whereis the number of
processes. The algorithm requites— k£ — 1 messages in the best case afd— 1) in the worst case.

This algorithm tolerates from failures of arbitraky— 1 processes. In [BC94], Baldoni and Ciciani
proposed a modification of Raymond'’s algorithm [Ray89a] so that it can provide priorities (e.g., short
job first) for mutual exclusion requests. To avoid starvations, they used gated batch priority queues.

Raynal proposed a resource allocation algorithm in [Ray91a]. He discussed allocation of any amount
of resources among/ identical resources. This is a generalizationkahutual exclusion because
k-mutual exclusion can be considered requesting one resource am@sgurces. The algorithm
proposed by Raynal also sends a request message to every processes.
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In [SR92], Srimani and Reddy proposed another algorithm which is a modification of Suzuki and
Kasami’s algorithm [SK85]. The number of messages necessary for each mutual exclusion invocation
is a half of that for Raymond's algorithm. The algorithm is token-basediao#lens are circulated to
guaranteg:-mutual exclusion.

2.3 Models andk-Coteries

In this section, the computational model we assume in Part | is describdidtrbuted systeroonsists

of n processesnd bidirectionatommunication linksonnected between all pairs of processes. (That

is, the network topology is a complete graph.) We assume that the structure of a program that each
process executes is as follows:

ProcessP;;
begin
while true do
begin
| Non-Critical Section |
(Enter a Critical Section
| Critical Section |
(Exit from a Critical Sectioh
\ Non-Critical Section \
end
end.

Each process executes the same program, but has unique process identifier. Without loss of generality,
we assume that process identifiers are positive integers, which every process knows. Processing speed
of processes may be different. Some processes may execute a program fast and others may do really
slow; the processing speed of processes may change even during the execution of a program. But it is
guaranteed that a process can execute its next instruction within a finite time unless the execution of
its algorithm has been terminated.

Each process has its owscal clock Each local clock may indicate different time, and no processes
can tell the global timé. Therefore, processes cannot make use of their local clocks to synchronize

1The definition of the distributed-mutual exclusion problem requires the existence of the global time.
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with other processes.

Since there is no centralized control to solve the problem and the only mechanism provided in
the system for information exchange between processes imiélssage passing.e., processes do
not have shared memory, processes must collect enough information from other processes through
communication links. We assume that links are error-free.

Each process has a message queue of infinite length, which stores messages arrived to it. Operations
provided for the message passing are as follows.

e SEND operation
SEND is used to send a message. To send a message, a destination process must be specified.
Messages sent by a process are eventually put into the message queue of the destination process
in a finite time.

e RECEIVE operation
As described, each process maintains a message queue. The first message in the queue is re-
trieved by issuing RECEIVE. We assume that a process can tell if the queue is empty or not.

The order of messages is kept unchanged during the delivery. That is, if a pfocEssds messages
my andms in this order toP, then P, receivesm; andms in the same order. It is guaranteed that
each message is delivered in a finite time. But the message delivery delay is unpredictable; the delay
may vary during the execution of a program.

Consider extending the concept of coteriefemutual exclusion. (The definition of coterie is shown
in definition 1.) The 1-mutual exclusion is guaranteed because there are no two distinct quorums in a
coterie. Thusk processes can be in their critical sections if therekadéstinct quorums, ané + 1
processes cannot be in their critical sections at a time if there akethd distinct quorums. By this
intuition, we have the concept &fcoterie. The formal definition is as follows.

Definition 3 A non-empty sef of non-empty subsetsof U is called ak-coterieif and only if all of
the following three conditions hold:

1. Non-intersection property:
Foranyh(< k) element®),,...,Qp, € Csuchthat); NQ; =0 (i # j) for1 <i,j < h, there
exists an elemer € C suchthatQ N Q; = P for1 < i < h.

2. Intersection property:
Foranyk + 1 elements), ..., Qir+1 € C, there exists a pai€); andQ; such that); N Q; # 0.

3. Minimality property:
For any two distinct elementg; andQ; inC, Q; Z Q;.

An elemeny of a k-coterieC is called a quorum. O
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Note that a 1-coterie is a coterie, and therefore, the concept-abéerie is an extension of a coterie.

Example 1 LetU = {1,2,...,6}. The followingC1,...,C5 are k-coteries & = 1,2,3) underU.
Note that a conditiony;Q; = U does not have to be true by the definitiorkefoterie.

o k=1
G ={{1}}
CQ = {{17 2}a {273}a {37 1}}
o k=2
Cs = {{1},{2}}
Cy= {{1’2}7{374}7{374}7{471}}
e k=3

Cs = {{1,4},{2,5},{3,6},{1,5},{2,6},{3,4},{1,6},{2,4},{3,5}}

A majority method can be defined férmutual exclusion. The following-coterie, ak-majority
coterig is a coterie that each quorums consists ofBhy= [(n+1)/(k+1)] processes. This s called
k-majority sincelV is approximately:/k and there are nb + 1 groups ofi¥ processes.

Definition 4 LetW = [(n + 1)/(k + 1)], wheren is the number of processes. The B, =
{Q: | Q: C U, |Q;| = W}is called ak-majority coterie O

A majority coterie is defined when > k2.2 A k-coterie which corresponds to primary the site
method is called &-singleton coterieA k-singleton coterie is &-coterie which consists éf quorums
such that each quorum consists of one process.

Definition 5 A k-singleton coterie Sglis a set{{P1},...,{Px}}, whereP, € U fori =1,...,k,
and P;’s are distinct. O

2In [MYKC94], Yuang and Chang claimed thatandk must satisfy following two conditions so that tkemajority coterie
is ak-coterie:

o kW <mn,
o (k+1)W >n
whereW is an integer.
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Fujita et al. proposed a construction algorithm of-aoterie whose quorum size @(/nlogn)
in [FYA91]. Like a concept domination for coteries, a concept dominatiorkfooteries can be de-
fined. Nielsen and Mizuno extended the concept of non-dominatioh-fmteries [NM94]. They also
proposed a composition method foicoteries.

Huang, Jiang and Kuo also reachiedoterie independently, which is slightly different from ours,
and investigated availability [STHK93]. Baldoni proposedoterie [Bal94b, Bal94a], which is com-
pletely different from ours. Hig-coterie requests that ‘intersection of alhguorums is non-empty’.

This idea is based on the following: every processhagrmissions and a process wishing to enter

a critical section gets a permission from each process in a quorunpriicesses are in their critical
sections then another process wishing to enter a critical section cannot get permissions since the inter-
section of anyk quorums is non-empty, which implies that there exists a process which passed all its
permission to other process. The message complexity of their algorithm/is*+1) — 17 in the best

case and[n*/(*+1) — 17 in the worst case.






Chapter 3

Availability of k-Coterie

In this chapter, we investigate the availability of the distributechutual exclusion by:-coterie. In
[BGM8T7], Barbara and Garcia-Molina showed that if the network topology is complete and communi-
cation links never fail and the reliability of each procesg is 0.5 then the majority method [Tho79]

is optimal in the sense of availability. It is conjectured thatmajority coterie is an optimal coterie
under some conditions becausk-eajority coterie is a natural extension of majority coterie (a coterie
corresponding to the majority method). In this section, we investigate the optimalityrafjority
coteries. Not onlyc-majority coterie but alsé-singleton coterie is investigate in this chapter.

3.1 Assumptions and Definitions

Before investigation of availability gf-coteries, we describe assumptions and define several concepts.
We investigate the availability df-coteries under the following assumptions:

1. The network topology of a distributed system is a complete graph; between each pair of pro-
cesses, there is a bidirectional communication link.

2. The communication links never fail.

3. For all processeB, the reliability of P, i.e., the probability of being in operation, is the same
constand < p < 1.

Availability is a probability that at least one process can achieve mutual exclusion in the case of the
1-mutual exclusion. For the purpose of investigation of fault-tolerance df-tn@tual exclusion, we
extend this concept. Sinéeprocesses may enter their critical sections, the probability-thedcesses
can enter their critical sections can be considered as a measure of fault-tolerance-ohtibeal
exclusion, where- is an integer such that < r» < k. This idea is formalized as a concept of the
(k, r)-availability.

Definition 6 LetC be ak-coterie overU, andr (1 < r < k) be an integer. Thék, r)-characteristic
function F¢ ;. - of C is a function from2Y to {0, 1} defined as follows:

33
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For eachS C U, F¢ 1 »(S) = 1if and only if there exist quorumsQ, ..., @, € C satisfying both
of the following two conditions;

QiNQ;=0forl <i,j<r i#j and
forall i, Q; C S.

That is, F¢ 1. (S) = 1 if and only if  processes can enter their critical sections, provided that all
processes it¥ are being up.

Definition 7 LetC be ak-coterie, and- (1 < r < k) be an integer. Thék, r)-availability Ry, ,-(C) of
C is the probability that at least processes can enter a critical section.

More formally, letG = (V, E) be the topology of the distributed system under consideration. Let
V' and E’ be, respectively, the sets of processes and links in operationPafid, E’) denote the
probability that this situation occurs. The topology of the distributed system in operation is the graph
G' = (V' (V'xV')NE’). We say a quorur® € C is available with respect t6” if ) is a subset of the
vertex set of a connected componen@6f If there arer distinct available quorumg)y,...,Q, € C
with respect ta&’ such that); N Q; =0 for1 <i,j <r, i # j, we say thati’ is r-available. Then
the (k, r)-availability ofC on G is defined as follows :

RorrC)= Y PV, E)
G'is r-available
The(k, r)-availability depends oii=. Because we assume tlGitis complete in this dissertation, we
omitG from Rg k. . O

Note that the (1,1)-availability coincides with the availability.

Let S be a set of processes being in operation. Thén, ,(S) = 1 if and only if at leastr
processes can enter a critical section ({8.= (5, (S x S) N E) is r-available) since the topology of
the distributed system is a complete graph. On the other hand, the probability that the set of processes
being in operation is exactly is p!°I(1 — p)»~I5I. Thus, the(k, r)-availability of a coterieC can be
calculated using the following formula:

Ry (C) = Z Fe o (S)p*!(1 = p)n~ 181,
SCU

Let C be ak-coterie, and- (1 < r < k) be an integer. Now, we construct a nélvcoterieC’ as
follows:
First, let

C={Q | Q=QU---UQ,, Q;eCforl <i<r,
andQ;,NQ; =0for1 <i,j<r i#j}
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Next, we remove all element@ from C’ such thatQ’ C @ for someQ’ € C’, in order for the
resultantC’ satisfying the minimality property. The?i has the following properties.

Property 1 C’is a | £ |-coterie. O

Property 2 Letk’ = [£]. Then,
Fepr=Ferp 1.

Hence,
Ry -(C) = Rk/J(C’).

We callC’ ther-contracted coteri®f C.

3.2 k-Majority Coteries
We investigate:-majority coteries Maj in terms of the(k, r)-availability.

Theorem 1 Let n be the number of processésbe an integer such thatn + 1) is a multiple of
(k+1),andr (1 < r < k) be an integer. Then, there is a constan{n, k, ) such that for any
process reliabilityp (p.(n, k,r) < p < 1), Maj, achieves the maximu(k, r)-availability. Hence,
Majy, is the besk-coterie in terms of thék, r)-availability if p > p.,(n, k,r), where

_ cln, k)
pu(n. k1) = c(n,k,r)+1°

and

rW—1 n
c(n,k,r) = ; <z>
(Proof) LetC (# Maj,) be anyk-coterie. We show thaRy . (Maj,) > Ry ,(C) for anyp >
pu(n, k,r). LetW = [(n+1)/(k + 1)] (i.e., W is the size of each quorum in M3j

Let C be anyk-coterie such thafty .(C) > Ry, -(Maj,). If every quorumQ in C had size> W,
then Ry, -(Maj,,) > Ry -(C) would hold, because if¢ - (S) = 1 then Fuaj, x,»(S) = 1 for any
S C U, since|S| > rW. Therefore, there exists a quorupy with size< W in C.

First, we show that there exists a set(C U) with sizerW such thatf¢ ; -(S) = 0. Suppose
that for anyS with sizerW, F¢ . -(S) = 1 holds. LetU; = U — Q. Since|U;| > n— W + 1,
|U1| > EW. Arbitrarily choose a se$ (C Uy ) with sizerW. SinceFg i -(S) = 1, there is a quorum
Q1 (C 9) in C whose size is at most/. Then we repeat this procedure oy = Uy — Q1. In
this way, we repeat this proceduile — r) times and can find a sequence of quoruis..., Qx—. in
C. Clearly,Q;nQ; = 0for0 <i,j5 < (k—r),i# j. Since|Q;| < Wfor0 <i < (k—r),



36 CHAPTER 3. AVAILABILITY OF K-COTERIE

| k, W, n || r=1 | r=2 | r=3 | r=4 | r=>5 | r==6 |
k=1, W=5n=9 0.9961089
k=2 W =5 n=14 || 0.9993207| 0.9999329 — — — —
k=3, W=4n=15 0.9982669| 0.9999390( 0.9999689 — — —
k=4, W =3, n=14 || 0.9906542| 0.9997121| 0.9999226| 0.9999386 — —
k=5 W =3,n=17 || 0.9935484| 0.9998937| 0.9999847| 0.9999918| 0.9999924 —
k=6, W =3,n=20 || 0.9952830| 0.9999539| 0.9999962| 0.9999987| 0.9999990| 0.9999990

Table 3.1:p,(n,r, k) forsomen (k= 1,...,6, r =1,..., k).

|Uk—r4+1| > rW. Thus, there exist quorumsQy 41, ..., Qi (€ C) in Uy—41 such that); N Q; = 0
fork—r+1<i,5 <k,i#j.Itisacontradiction, sinc;, NQ; =0for0 <i,j <k, i#j.

Then, there exists a s8t (C U) with sizerW such thatFe i (S) = 0. Let A = Ry .(Maj,) —
Ry »(C). SinceFwaj, k.~ (S") = 1 for everyS’ with sizerW, by definition,

rW—1 n . )
A > p|S|(1_p)n—|S|_ Z (,)pl(l—p)n_z

1
1=0
PV —p)" W —c(n, kyr)p™ (1 - p)n L,

v

where

It is easy to show thah > 0 if
c(n, k,r)
> = u 7k7 .
b= 1+ c¢(n, k,r) Pu(n,k;7)
Sincec(n, k,r) < c¢(n, k,r + 1), the following corollary holds.
Corollary 1 If p > p,(n, k, k), thenMaj,, is optimal in the sense ¢k, r)-availability forall 1 < r <
k. O
Table 3.1 showg, (n,k,r) (k=1,...,6 andr = 1,..., k) for somen.
Theorem 2 For any non-negative integen, (2m + 1)-majority coterieMaj,,,, , ; achieves the max-

imum (2m + 1, m + 1)-availability, if the process reliabilityy > 1 and (n + 1) is a multiple of
2(m+1).
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(Proof) LetC (# Maj,,,, ) be any(2m + 1)-coterie, and assume thétachieves a bettefm +
1, m+ 1)-availability than Maj,, , , for somep > 1. By C’, we denote thém + 1)-contracted coterie
of C. Then by Property 1¢’ is a 1-coterie. By definition of Mg@j the (m + 1)-contracted coterie of
Majz.,+1 is 1-majority coterie Maj, since(n+ 1) is a multiple of2(m +1). Since Maj (i.e., majority
coterie) achieves the maximufi, 1)-availability (i.e., availability) for allp > % (Theorem 3.1 in
[BGMS8T7]), the(1, 1)-availability of Maj;, is not smaller than that @', a contradiction by Property 2.
O

So far, we have derived a sufficient condition femajority coterie to be optimal in terms of the
process reliabilityy). Now, we proceed to state a lower bound on the process religbfiiyk-majority
coterie to be optimal. We first present how to construct ahw@eterieC from k-majority coterie Maj,
and then by comparing theik, r)-availabilities, derive the necessary condition.

Arbitrarily choosen, k, andr (such thai{n + 1) is a multiple of(k + 1), and fix them. We construct
ak-coterieC from Maj;, as follows: LetQ), be any quorum in Maj, and P, be any element if),. Let
Q1=Qo — {Pv}. Then,

C = Maj, +{Q1} —{QeMaj, [Q=Q1+{P}, PeU—Q1}
—{Q e Maj, | @NQo = {Fo}}-
We compare their availabilities. Observe tiat;, ,.(S) = 1 forall S C U with size atleastWW +1,
and thatf¢ ;. -(S) = 0 forall S C U with size at mostW — 2, whereW = (n+1)/(k+1) (i.e., the

size of quorum in Maj). On the other hand, by definitiofuaj, ., (S) = 1 if and only if | S| > »WV.
DefineI'™ andI'~ as follows:

rt = {S cU | FMajk,k,r(S) =0& Fc’k,r(S) = 1}
I'™ = {S cU | FMajk,k,r(S) =1& Fc’k,r(S) = 0}

Note that by the observationsj| = rW — 1if S € I'T, and|S| = rW if S € I'". SinceQ is the
only quorum with sizd¥ — 1inC, S e Tt ifandonly if Q; C S, Py € S, and|S| = rW — 1, by
definition ofC. Therefore,

T = ( n—W )
W —1— (W —1)
EW —1
- ((r - 1>W)'
Next, we show thaS € T~ ifandonly if Q. NS = 0, Py € S and|S| = rW. To show if
part, assume thafe j -(S) = 1 holds (sinceFuaj, k.~ (S) = 1). SinceP, € S, there is a quorum
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Q containingF, in C, a contradiction sinc€ N Qo = {Fy}. As for only if part, if eitherP, ¢ S
or Q1 NS # 0, then one can easily find quorumsGy, ..., G, in C such thatS = |J;_, G; and
GiNG;=0forl <i,j<r i+ j. Therefore,

n—W
F_ =
| (rW—l)
B kW —1
- W —1)°

By definition,

A = Ri.,(C)— Rir(Maj,)
_ |F+|er—1(1 _p)n—(rW—l) _ |F—|er(1 _p)n—rW

e (S o (7))

Therefore A > 0 if and only if
kW -1
((rfl)W)

p> — —.
(Mow) + Gw)

Theorem 3 Let n be the number of processés,be an integer such that. + 1) is a multiple of
(k+1),andr (1 < r < k) be an integer. Then, there is a constanfn, k,r) such that for any
process reliabilityp (0 < p < pi(n, k,r)), Maj, does not achieve the maximu r)-availability.

Hence Maj;, is not the besk-coterie in terms ofk, r)-availability if 0 < p < p;(n, k, ), where

( EW—1 )
b= kW—Y_l)WkW—l :
((r—l)W) + (rW—l)

Table 3.2 showg;(n,k,r) (k=1,...,6,r=1,...,k) for somen.

3.3 k-Singleton Coteries

This section shows a sulfficient condition foisingleton coteries to be optimal in terms of the process
reliability p.

Theorem 4 Letn be the number of processes, ahd< n) andr (1 < r < k) be integers. Then,
there exists a constantn, k, ) > 0 such that (any}-singleton coterieSgl; is optimal for all process
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| k, W, n || r=1 | r=2 | r=3 | r=4 | r=>5 r==6 |
k=1, W=5n=9 0.5000000 —
k=2 W =5 n=14 || 0.0078740| 0.9921260 — — — —
k=3, W=4n=15 0.0060241| 0.5000000( 0.9939759 — — —
k=4, W =3, n=14 || 0.0178571| 0.2631579| 0.7368421| 0.9821429 — —
k=5 W =3,n=17 || 0.0108696| 0.1538462| 0.5000000| 0.9891304| 0.9891304 —
k=6, W=3,n=20 || 0.0072993| 0.0099010| 0.3373494| 0.6626506| 0.9009901| 0.9927007

Table 3.2:p;(n,r, k) forsomen (k =1, ...,6, r = 1,..., k).

reliability p (0 < p < ¢q(n, k,7)). HenceSgl; is the besk-coterie in the sense ¢k, r)-availability if
p <q(n,k,r).

(Proof) LetC be anyk-coterie which is not &-singleton coterie. We show that there exists a constant
t > 0 such that for all process reliability (0 < p < t), the (k, r)-availability of Sgj is larger than or
equal to that of. The proof here is similar to that of Theorem 1.

Let A = Ry »(Sql,) — Rk (C). By definition, for all S with size at most — 1, Fsg), 1. (S) =
Fe 1.+(S) = 0. Define

[{S| Fsgi, .k,r(S) =1,]S| =r}|, and
(S | Ferr(S) =1,|S| =7}

mo

mi

Then, clearlyng > m1, sinceC is not ak-singleton coterie. Therefore, by definition,

T n—r - n i n—1
AZp(l—p =Y (i)p (1—p)".
i=r+1
It is easy to see that there is a constastich thatA > 0 forall p (0 < p < t).
Since the number of differetcoteries are finite, the theorem follows. O

3.4 Concluding Remarks

In this chapter, we investigated the goodness of two typieabteries,k-majority coteries and-
singleton coteries, in terms of th{&, r)-availability. Intuitive interpretation of thék, r)-availability
of a k-coterie is the probability that processes can enter their critical sections (in spite of process
failures).

We derived a necessary and a sufficient conditions on the process reliplidity-majority coterie
to achieves the maximuitk, r)-availability. We also showed that there is a constarit- 0) such
that for any process reliability < p < ¢, (any) k-singleton coterie achieves the maximui r)-
availability. The investigation revealed thiamajority (k > 2) is no longer optimal for alp > 1. (As
a matter of a result, 3-majority is not optimal evep &= 0.9939 for n = 15 andr = 3.)

Table 3.3 shows thék, r)-availability of k-majority andk-singleton coteries when = 14 and
k = 4. It can be observed that asncreases, the process reliabilityat which the(k, r)-availabilities
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p

k, T 00 | 01 [ 02 | 03 | 04 | 05 | 06 [ 07 | 08 | 08 [ 10

4,1 | Maj, ]| 0.0000] 0.1584 | 0.5519 ] 0.8392] 0.9602 | 0.9935] 0.9994 | 1.0000 ] 1.0000 | 1.0000 ] 1.0000
Sgl,_|| 0.0000 | 0.3439 | 0.5904 | 0.7599 | 0.8704 | 0.9375 | 0.9744 | 0.9910 | 0.9984 | 0.9999 | 1.0000
4, 2 | Maj, || 0.0000 | 0.0015 | 0.0439 | 0.2195 | 05141 0.7880 | 0.9417 | 0.9917 | 0.9996 | 1.0000 | 1.0000
Sgl,_|| 0.0000 | 0.0523 | 0.1808 | 0.3483 | 0.5248 | 0.6875 | 0.8208 | 0.9163 | 0.0728 | 0.9963 | 1.0000
4, 3 | Maj, || 0.0000 | 0.0000 | 0.0004 | 0.0083 | 0.0583 | 0.2120 | 0.3373 | 0.6405 | 0.8883 | 0.9985 | 1.0000
Sgl,_|| 0.0000 | 0.0037 | 0.0272 | 0.0837 | 0.1792 | 0.3125 | 0.4752 | 0.6517 | 0.8192 | 0.9477 | 1.0000
4, 4 | Maj, || 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0006 | 0.0065 | 0.0398 | 0.1608 | 0.4481 | 0.8416 | 1.0000
Sgl,_|| 0.0000 | 0.0001 | 0.0016 | 0.0081 | 0.0256 | 0.0625 | 0.1296 | 0.2401 | 0.3164 | 0.5220 | 1.0000

Table 3.3:(k, r)-availabilities of Majand Sgl.(k = 4, n = 14).

of Sgl, and Maj, reverse also increases. For example, (thet)-availability of Sgl, is larger than
that of Maj, even ifp = 0.7, but the(4, 1)-availability of Maj, has already been larger than that of
Maj, whenp = 0.3. (This tendency can be shown formally.) Therefore, when we choose appropriate
k-coteries in practical applications, we should take into account paramasesn important one.

For simplicity of analysis, throughout the chapter we assume(that 1) is a multiple of(k + 1),
when k-majority is investigated. It is strongly conjectured that the tendencidsrogjority in this
chapter should hold for generial and an analysis of this case is left as a future work.



Chapter 4

A Distributed k-Mutual Exclusion
Algorithm using k-Coterie

In this chapter, we propose a distributednutual exclusion algorithm which usesaoterie. Differ-

ent from algorithms proposed in [Ray89a, Ray91a, SR92], the number of messages sent by processes
can be smaller. Another advantage of this algorithm is that it provides so-called the graceful degrada-
tion property; since a critical section entrance request is granted if all members in a quorum grant it,
even though a large part of the system are being down, there is a possibility that a process can enter a
critical section.

4.1 The Distributed k-Mutual Exclusion Algorithm

To avoid deadlocks and starvations, the timestamp introduced by Lamport[Lam78] is usebde tie¢

logical time at which a procesR initiates a request. Then, the pé&ir P) is the timestamp attached

to the request. Note that since an identifier of a process is unique, so ig fajt As usual, we

define a total order among timestamps by the lexicographical order assuming that the identifiers are
non-negative integers.

Now, we present a detailed description of our algorithm. Our algorithm and Maekawa’s algorithm
[Mae85] are the same, except the following difference:

In Maekawa'’s algorithm, for each proceBs a quorum( is statically determined, and insists on
gathering permission from all membersdh This approach may be reasonable for solving the 1-
mutual exclusion problem, since failing to gather permission fépitikely suggests that another pro-
cess is being in a critical section, i.€. cannot gather permission from any quorum. On the other hand,
when thek-mutual exclusion problem is considered, insistingé@does not seem to be a good idea,
since althoughf) is busy,P may be able to find another quorum from which it can gather permission,

11t is shown that Maekawa’s algorithm[Mae85] cannot avoid deadlocks [San87]. We adopt the version suggested by
Sanders[San87].
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because there afg — 1) quorums which do not intersect witQ. Thus, our algorithm tries to find
such a quorum.

LetC be ak-coterie. Each proceg3has local variables YES, NOTNOW, and PERM. Variables YES
(resp. NOTNOW) keeps the set of processes which have agreed (by message OK) (resp. disagreed
(by message WAIT)) o entering a critical section, and variable PERM keeps the process (i.e., more
rigorously, the REQUEST it initiates) thd has agreed on entering a critical section (by message
OK) but has not yet received a message RELEASE stating that it has left the critical section, if there
is such a process. Sinéenever give permission to two processes at a time, PERM is either empty or
a singleton set. Initially, YES, NOTNOW, and PERM are the empty set. Notemaay receive OK
messages from processes in NOTNOW. In such cases, these processes are moved from NOTNOW to
YES. The proces# also maintains a priority queue QUEUE for keeping REQUESTSs in the order of
their timestamps.

The algorithm is given in English as in many literatures (e.g., [Mae85]) to save space.

The Algorithm

o WhenP wishes to enter a critical section:

It selects a quorum) from C, and sends REQUEST, P) to every member; in @ (including
P itself), and waits for a reply (OK or WAIT) fronP;, where(t, P) is the timestamp (i.et,is
the current logical local time i#®). If every P; answers an OKP can enter the critical section.

If some processes answer WAITB, adds the processes answering OK (resp. WAIT) to YES
(resp. NOTNOW), selects another quordrwhich minimizes|@ N YES| from quorums irC

not intersecting with NOTNOW (if there is such a quorum), and repeats the procedure from the
first, except that this timel> sends REQUES(, P) only to members if@Q'—YES). (Hence,

each process receives at most one REQUEST messageHrprif P cannot find a quorum
satisfying the condition, theR waits for receiving OK messages.

During the above procedur#, may receive an OK from a proce$} in NOTNOW. Then,P
tests if a quorum is included in YES after movift from NOTNOW to YES, and® can enter
the critical section if the test succeeds.

e WhenP leaves the critical section:

It sends a RELEASE message to each process in ORESTNOW.

e WhenP receives REQUEST, P;) from a process;: ProcessP sends back OK, if PERM is
empty, and adds REQUE®T P;) to PERM.

If PERM is {REQUESTt,, Ps)}, i.e., not empty, therP acts as follows. ProcesB in-
serts REQUESTE, P;) in QUEUE. Let REQUESTE,, P,) be the request having the smallest
timestamp (i.e., the one having the highest priority) among those in QUEUE, &) >
man{(ts, Ps), (t», P-)}, thenP sends back a WAIT t@;. Otherwise, i.e., if REQUEST, P;)
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has the highest priorityP sends a message QUERY to resume the permission ffomn-

less P, is being in a critical section, and waits for a reply (RELINQUISH or RELEASE)
from P;. (If P has already sent a QUERY tB, and is waiting for a reply, then no fur-
ther QUERYs are necessary to send.) Hfreceives a RELINQUISH, then it exchanges
REQUEST¢,, P;) and REQUESTt, P;), i.e., it moves REQUES(E,, P;) from PERM to
QUEUE and REQUESE, P;) from QUEUE to PERM, sends a WAIT to all processes in
QUEUE to whichP has not sent a WAIT since the last QUERY was issued, and finally sends an
OK'to P;.

e WhenP receives a RELEASE message ftBm

P removes the request frof; in PERM. If QUEUE is not empty, then let REQUEST, F,)
be the request having the highest priority in QUEUE. THeémoves it from QUEUE to PERM,
sends an OK td>,., and sends a WAIT to all processes in QUEUE to whi¢ihas not sent a
WAIT since the last QUERY was issued.

e WhenP receives a QUERY message fréin

If Pis notin a critical section ang; is in YES, thenP movesP; from YES to NOTNOW and
sends back a RELINQUISH messageRp If either P is being in a critical section aP; is not
in YES, thenP does nothing.

An example of implementation of this algorithm is shown in Appendix B.

4.2 Correctness proofs

Now, we show the correctness of the proposed algorithm. We show that the algorithm guarantees
k-mutual exclusion, deadlock free, and starvation free.

Theorem 5 The algorithm guarantegs-mutual exclusion.

(Proof) Any proces$’ can enter a critical section if and only if there is a quo@rauch that) CYES.
If more thank processes are being in critical sections at a time, then by definitibrcoferie, there
are processeB and P; such that YESs of’ and P; have a proces®,. in common, a contradiction
since if YES of a procesg;, includesP, then PERM ofP, contains a REQUEST fron® as its only
element. O

Theorem 6 The algorithm is deadlock free.

(Proof) Assume that a deadlock happens. Consider a directed graph whose nodes are processes and
links are edges defined as follows: there exists an edge faemP; in the graph if and only i?; has
the permission of a proce$% andP is requesting it, i.e.P is waiting for its release. Since the system
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is in a deadlock state, there exists a cycle in the graphPy.eP,, ..., P,,_1 be processes that forms a
cycle such that
Py—P— - — Ph_1— P,

andt; be the priority (the timestamp at which a mutual exclusion request was issued) of pfocess
Note that without loss of generality, we can assume that no prd&assn a critical section. (If such
processP; exists, it eventually exits from a critical section and releases the permissions it keeps and
the cycle of the graph is broken in a finite time.)

Each proces# preempts its permission having sent to a prodgsis a new request whose priority
(defined by timestamp) is higher tha&’s. Since a cycle is formed, the permission which is kept by
P; 11 mod m 1S NOt preempted byp; for all 7. Butt; > ;11 moa m holds for eachi, we havety > tg; a
contradiction. O

Theorem 7 The algorithm is starvation free.

(Proof) Assume that there exists a procéswhich starves. In general, more than one process may
starve. Without loss of generality, we assume th@t REQUEST is the one having the earliest (i.e.,
smallest) timestamp. Since the system is deadlock-free by Theorem 6, non-starving processes wishing
to enter their critical sections will eventually enter them and therefore the timestamps they attach to
REQUEST increase. Since REQUESTSs are discarded when the corresponding RELEASES arrive, the
system will eventually reach a configuration such that the timestanifsdREQUEST is the smallest
one among those existing in the system not only now but also forever.

Let  be the quorum thaP selects. Ther? sends a REQUEST to all members € (), and all
P; will eventually receive the REQUEST and store them in their QUEUEs. As showed above, the
system will eventually reach a configuration such that the timestanisdREQUEST is the smallest
one in the system, and therefaRss REQUEST will eventually be moved to the head of QUEUE at
eachP; € . Process’; returns an OK taP if its PERM is empty. Suppose that PERM contains a
REQUEST from another proces$$. ThenP; sends a QUERY td,, it will eventually reachP,, P,
will return either a RELINQUISH or a RELEASE, and finally it will eventually reakh sinceP,’s
REQUEST has a timestamp larger th&lis REQUEST. In either casé; returns an OK taP. At P,
a QUERY never arrive after an OK since the timestamp@P&f REQUEST is the smallest even in a
future. Now, a contradiction is derived sinfewill eventually receive OKs from all membef € Q
and can enter its critical section. O

4.3 Message complexity

Let C be thek-coterie used in the algorithm. The number of messages required per mutual exclusion
entrance i8|Q| in the best case, since a process sends REQUEST, receives OK, and sends RELEASE,
to and from all members @), whereQ is the quorum irC selected by the process, as [Mae85]. Since
there proposed an algorithm for constructinkreoterie whose quorum size@¥(/n logn) [FYA91],

the message complexity of our algorithm becab{e/n logn), in the best case.
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When a proces# fails to gather permission from all members in a quor@n{i.e., when a WAIT
message arrives), unlike Maekawa'’s algorithm, the algorithm selects another quorum and tries to gather
permission from members of another quorum. Therefore, the algorithm is by no means efficient, as
far as the worst case message complexity is concefiredhessages per critical section entrance is
required, wheren is the number of processes. (For example, the worst case occurs in a pRycess
when for all proces®; (# P), P sends REQUEST t®;, P; sends QUERY to some process, P.
sends RELINQUISH t&P;, P; sends OK taP, P sends RELEASE t@;, and P; sends OK taP,.)

This is definitely a serious problem, and in order to avoid such situations, we must bound the number
of “retries” so that the total number of processes tRatan send request messages is bounded by a
reasonable function(n). It is easy to see that Theorems 5 — 7 hold, even if we bound the number of
retries in terms of bounding functiarin), provided that(n) > ¢, wherec is the maximum quorum
size of C, and therefore, the number of messages required per critical section entrance is bounded
from above by6e(n), in the worst case. For instance, if we take) = |@Q|, where|Q)| is the size of a
quorum, then the message complexitg|i®|. But by bounding the number of retries, processes may
be required to wait a longer time than our original algorithm, since processes may be able to find a free
qguorum by further retries.

4.4 Concluding Remarks

In this chapter, we proposed a distributednutual exclusion algorithm based on the concepkt-of

coterie. The message complexity of our algorithnddsn the best case, angh in the worst case,

wherec andn are the maximum quorum size and the number of processes, respectively. The worst
case message complexityn, is extremely bad, but by introducing a bounding functidn) (> ¢)

which bounds the number of processes to which a process can send a request, the worst case message
complexity can be reduced 6a(n), at the expense of the increase of waiting time for entering a critical
section. An obvious open question is whét) should be used for the purpose here.

In [Bal94b], Baldoni proposed a distributed algorithm for theut of-M resources allocation prob-
lem which requires[n*/(*+1) — 1] in the best case arign*/(**1) — 1] in the worst case. Manabe
and Aoyagi also proposed the same definitiok-@oterie independently [MA93] and proposed a dis-
tributedk-mutual exclusion algorithm which requiséQ| + 3 messages in the worst case an@| + 3
in the best case wheté@)| is the size of quorum used in their algorithm.

In appendix A, we consider more general case in such a way that a set of resources avaiable to a
process is different from processes. To this end, we introduce a concept of local coterie and propose a
distributed resources allocation algorithm.

As a final remark, we would like to stress that there can be many different metrics to measure
the goodness of-mutual exclusion algorithm, besides the message and the time complexities. For
example, from the view of fault tolerance, availability is considered to be a good measure for measuring
the goodness of &-coterie and investigated in the previous chapter. However, investigatién of
mutual exclusion algorithm using other metrics is still remained open, and this is left as a future work.
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Algorithms

Message Complexity

the best case

the worst case

Raymond [Ray89a] 2n—k—1 2(n—1)
Raynal [Ray91a] 0 3(n—1)
Srimani and Reddy [SR92] 0 n+k—1
Baldoni [Bal94b] 3P/ R+ 1] | 5[nF/R+D) 1]
Ours 3|Q] 6n

Table 4.1: Message complexities of disributedchutual exclusion algorithms




Chapter 5

Experimental Evaluation of the
k-Mutual Exclusion Algorithm

In the previous chapter,/amutual exclusion algorithm usingkacoterie is proposed and its message
complexities in the best and worst case are discussed. It is difficult to evaluate the average message
complexity of distributed algorithms by analysis, in general. In this chapter, we evaluate the message
complexity of the average case of the proposed distribkteditual exclusion algorithm by computer
simulations. We also evaluate an algorithm by Raymond proposed in [Ray89a] and show the advan-
tages of our algorithm.

5.1 Assumptions and the Simulation Model

In Chapter 2, we assumed that the distributed system assumed in Part | is totally asynchronous. To
evaluate the average behavior of distributed algorithms, such assumption is not appropriate; we assume
that each process shares the same time flow, i.e., the distributed system is synchronous. Note that the
algorithm on the system is designed under the assumption of asynchrony. Because we assume a global
clock, we can define a common time unig@antum times a unit time used in this chapter.

The model of behavior of each process is as follows: Each process has four Nt@atesl, Re-
guesting, In-CS andExiting) and changes its states according to conditions.

e Normal state — When a process is in this state, it does not do active task, i.e., it is passive. If it
receives a message from another process then it processes the message. But a mutual exclusion
request happens with probability(0 < p < 1) every quantum time. If a mutual exclusion
request happen, the state becdRegjuesting state.

e Requesting state — This is the state that a process is executing a procedure for mutual exclusion
request (e.g., sending request messages, waiting permissions, etc.). When a process successfully
enters a critical section, the state becdm€sS state.

47
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\ Requesting state

with prob. p

Normal state

After Tcs
-

Exiting state In-CS state

Figure 5.1: The behavior of a process

e In-CS state — When a process is in a critical section, it is in this state. After some specified
time Tcs is passed after entering a critical section, the process comes out a critical section and
its state becomExiting state.

e Exiting state — A process is in this state when it is executing a procedure of exiting a critical
section such as returning permissions. After finishing an exiting procedure, the state become
Normal state.

The behavior of a process is illustrated in Figure 5.1

5.2 Outline of the Simulation System

In this section, the simulation system is briefly described. Since the purpose of this chapter is not
discussing a simulation method itself, we describe the outline of the design and implementation of the
system.

The simulation system is executed on several workstations that are interconnected by a local area
network. Processes are executed on different workstations, i.e., when a distributed system which
consists ofn processes is simulated, workstations are used. (See Figure 5.2.) Therefore, each
process is executed truly in parallel.
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Workstation 4 Workstation 5
(Ezecuting Process-4) (Ezecuting Process-5)
A/ A
Local Area Network —/
(Ethernet)
I I L
Workstation 1 Workstation 2 Workstation 3

(Ezecuting Process-1)  (Ezecuting Process-2)  (Executing Process-3)

Figure 5.2: The simulation system (in the case 5)

As described above, we are assuming that the speed of time flow at each process is the same. To
implement such situation, one of solutions is letting the time flow of a process be the same as (or
proportional to) that of real time. We let the time unit at processe&jsecond. (In our experiment,
one unit of time, T is 1 second.) Therefore, the speed of time flow at a process does not depend on
the processing speed of workstations, i.e., the same time flow is guaranteed. Each workstation has real
time clock; therefore implementation is easy. Since 1 second is enough long time for CPUs, the local
computation time at processes is negligibly short.

The message exchange between processes are implemented by inter process communication
facilities[Sun90]. Sincestreamcommunication is synchronous, if two processes try to send message
at the same time then these processes fail into deadlock state; a process waits for message reception
of the other process, and the other process waits for message reception of another one. Therefore,
message passing must be asynchronous. Thus, message exchange between processes is implemented
by using asynchronowdatagramcommunication.

The simulation program is written in programming language C. An executable file is placed at each
workstation and executed by remote execution feature. Program fragments of implementation of the
proposed algorithm and Raymond’s algorithm are shown in Appendix B.
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5.3 The Distributed k-Mutual Exclusion Algorithm by Kerry
Raymond

In this section, we briefly explain the distributéemutual exclusion algorithm proposed by Raymond
[Ray89a].

In her algorithm, sequence number ([Lam78]) is used to avoid deadlock and starvation. A process
X wishing to enter a critical section sendRBQUEST message to the other— 1 processes, where
is the number of processes in the distributed system. When a pidgesgives &REQUEST message,
it sends &REPLY message unless it is in a critical section or requesting a mutual exclusion with higher
sequence number than's sequence number. Otherwidé defers sending REPLY message t .

The processX can enter its critical section if it receives— k REPLY messages. Since— k =
(n—1)—(k—1), receivingn — k REPLY messages guarantees that the number of processes which are
not in their critical sections nor are requesting with higher priority is less #hdius, X can enter its
critical section.

Since a process enters a critical section if it receives enlty kK REPLY, it may receiveREPLY
messages when it is in a critical section, after exiting a critical section, or when it is requesting next
mutual exclusion, and so on. The algorithm is designed to ignore such delayed messages. See [Ray89a]
in detail.

It is easy to see that the algorithm require at least— &k — 1 messages per mutual exclusion
invocation. In the worst cas@(n — 1) messages are necessary. This method is not fault-tolerant
comparing with our algorithm because alive processes are not in operational if arbipargesses
are stopped.

5.4 Simulation and Results

Conditions of the experiment are as follows:
e aquantum timéy, is 1 second,
e Tcg, the time that a process is in a critical section, is 1 quantum time,
e ak-coterie used by our algorithm is tthemajority coterie, and
e the experiment is done for 500 quantum time.

Because:-majority coterie is a coterie whose quorum size is not small, the message complexity of
our algorithm become smaller if we use a coterie whose quorum sizes are smaller. KWWmagwity
coterie because it is simple.

The experiment is done for:

e k=2,n=5,8,11,

e k=3,n=7,and
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e k=4,n=0.

For each experimenyp, the probability of mutual exclusion request, is varied froral to 1.0.
Workstations used for the experiment are 7 AV-300’s (Nippon Data General) and 4 DS-7400’s (Nippon
Data General) on which the DG/UX operating system (version 4.32 for AV-300, version 4.02 for DS-
7400) is available.

Under conditions as described above, the total number of messages sent during the experiment and
the number of entrance of critical sections are counted. From these two data, the average number of
messages per mutual exclusion invocation is calculated. Let this valuentgch is computed by the
following formula.

> M

_1<i<n
2 72 c, )

1<i<n
whereM; is the number of messages that processnds and’; be the number of times that process
i enters a critical section during the experiméght i < n).!

Results of the experiment are shown in Figure 5.3 — Figure 5.7.

In case thap is small (for instance, in case & = 4, n = 9; see Figure 5.7)y (the number
of messages which our algorithm requires to enter a critical section) is much smaller than that of
Raymond’s algorithm, as expected. Figure 5.7 shows that it achieves the be8t@hse 6 when
p = 0.01. We can see from figures thatgradually increases with the increasepoif p is small
(for instancep < 0.2 in case ofk = 4, n = 9). But whenp become larger, suddenly increases
and whenp comes near td.0, p saturates. This observation is described as follows. When
enough small, mutual exclusion requests do not collide often. In addition to it, even if a process fails
to get permissions from a quorum, the probability that it gets permissions from a next quorum is large.
Therefore, the number of additional messages is rather smalp Bateases, collisions often happen
and the probability that processes choose another coterie but fails to get permissions become large and
preemption also happens often; this cause a sudden increase of

Consider the case thatis fixed andn increases (see Figure 5.3, Figure 5.4, and Figure 5.5). In this
case, the increase afcauses the increase of the probability of collision of mutual exclusion requests.
Therefore, increases. Leiyower be a probability that the number of message of our algorithm become
larger than that of Raymond’s. We calbver Cross over probabilityln the case ok = 2, the cross over
probabilities can be found from figures and shown them in Table 5.1 It is interesting that the product
of the number of processes and cross over provability is almost the same. From this observation, the
message complexity of our algorithm depends of the total probability of mutual exclusion requests in
the distributed system. It is easily guessed that the produetasfd pyover depends of thé-coterie
the algorithm uses, however, we use this observation to guess the rgngaabf that our algorithm is
more efficient than Raymond'’s algorithm in the sense of message complexity.

1For convenience, let process identifier be an integer betweein.
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Figure 1. The Number of Messages

Figure 5.3: The average number of messages ¢, n = 5).

n | pxover (Cross over probability) n - pxover
5 ~0.9 ~ 0.45
8 ~ 0.6 ~ 0.48
11 ~ 0.4 ~0.44

Table 5.1: Cross over probabilities for= 2
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Figure 5.4: The average number of messages @, n = 8).
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Figure 1. The Number of Messages

Figure 5.5: The average number of messages @, n = 11).
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Figure 1. The Number of Messages

Figure 5.6: The average number of messages ¢, n = 7).
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Figure 5.7: The average number of messages ¢, n = 9).
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The largerk becomes (for instance, compare cakes 2, n = 5 andk = 4, n = 9; see figure
5.3 and figure 5.7), the smallgrbecomes ifp is small. This is why that the size of quorum become
smaller if & become larger. Note that themajority coterie is used in this experiment. If we use
another coteries whose quorum size is smabbecomes smaller.

It is shown that our algorithm requirés messages per mutual exclusion invocation. Evénsf 2
andp = 1.0, the number of messages per mutual exclusion invocation is approxin3ateiich is
half of the worst case message complexity

5.5 Concluding Remarks

In this chapter, we evaluated our distributednutual exclusion algorithm which uséscoteries. As

a drawback of our algorithm, the number of messages become much larger than Raymond’s algorithm
requires. But the probability of mutual exclusion is small &nid large, our algorithm require less
messages. Since we can choosk-eoterie whose quorum size is small, the number of required
messages can be reduced.

The time between the time of mutual exclusion request happen and the time of entrance of critical
section can be considered as a measure of evaluation of mutual exclusion algorithm. But the simulation
model we adopted is not appropriate to evaluate the time because the delivery time of messages are
much smaller that time unit. To evaluate such measure, we need another simulation model and a
simulation system implementing such model. This is left as a future task.
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Chapter 6

The Self-Stabilization Approach for
the Distributed £-Mutual Exclusion

A self-stabilizing system is a system which converges to a legitimate (correct) system state even if the
system starts from an arbitrary system state. The concept of self-stabilizing systems is proposed by
Dijkstra in [Dij74]. Even if a system state changes from a legitimate state to a non-legitimate state
by transient failures (e.g., message omission, restart of process, etc.), the system starts the execution
of a self-stabilizing algorithm from the state and eventually reaches to a legitimate state again. Thus,
self-stabilizing systems are resilient to any transient failures. Since the fault-tolerance of distributed
systems is an important issue, the study of self-stabilizing systems getting moretactive.

In this chapter, we summarize computational models used in studies of self-stabilizing systems.
Next, we give a review of previous works for the self-stabilizing mutual exclusion problem which
are related to this dissertation. Finally, we give formal definitions of computational models and the
self-stabilizingk-mutual exclusion problems used in Part 2.

6.1 Computational Models

Usually, distributed algorithms adopt an asynchronous message passing model for information ex-
change between processes. Self-stabilizing algorithms, however, adopt the following models for com-
munications.

e State communication model— A communication model such that every process can know its
neighbors’ states. There is no explicit message sending/receiving steps in the description of an
algorithm based on this model. It is assumed that neighbors’ states can be known without time
delay.

1A term self-stabilizing algorithnformally refers to just an algorithm which has self-stabilizing property executed by pro-
cesses and a terself-stabilizing systerformally refers to a system consisting of a network (processes and communication
links) and a self-stabilizing algorithm executed by a process. In this dissertation, we use terms “self-stabilizing systems” and
“self-stabilizing algorithms” interchangeably.
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e Register communication model— A communication link between proce#s and Pg is as-
sumed to consist of two registeis,andRg. When P4 sends a message s, P4 writes
data into the registeR 4. To receive a message froRy, Pp reads the registeR 4. To send a
message t@4, Pp writes data into the registdtz and thenP4 read from it.

e Message communication model— Processes use an asynchronous message passing to ex-
change information. Since it is asynchronous, the delay for message delivery is finite but it
cannot be predicted.

Since distributed systems consist of more than one processes, a scheduling of executions of pro-
cesses is one of an important issues in designing distributed algorithms. The following models are
proposed as schedulers (adversaries).

e Central daemon (or, c-daemon)}— A scheduler such that only one process is chosen to be
executed at each step. A process can read states of all its neighbor processes and updates its
state in one step.

e Distributed daemon (or, c-daemon)— A scheduler such that arbitrary number of processes
are chosen to be executed at each step. A process can read states of all its neighbor process and
updates its state in one step.

e Read/write daemon (or, r/w-daemon)— This model can be adopted if a communication model
is the register communication model. At each step, only one process is chosen to be executed
and each process can take an action such that an internal transition followed by reading from or
writing to a register.

Many distributed algorithms assume the existence of unique process identifier. The following mod-
els related to process identifier have been considered.

e Uniform — There is no process identifier and every process has the same algorithm. Thus, all
processes are completely identical.

e Semi-uniform — All process except one or several (constant) number of processes are identical.
Special process(es) has different algorithm from other processes.

e Unique identifier — Every process has a unique process identifier.

6.2 Previous Works

In this section, we review the previous works for the self-stabilizing mutual exclusion problem.

The first paper in which self-stabilization is proposed is [Dij74] by Dijkstra in 1974. He proposed
a self-stabilizing algorithm on bidirectional rings which solves the mutual exclusion problem. In his
paper, he introduced daemons as models of scheduler and his algorithm based on state communica-
tion, c-daemon, and semi-uniform model. In a ring network, he assumed a special process called the
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“bottom” process. The idea of the algorithm is as follows. Depending on a relation with neighbors’
states, a process is said to have an token if a predicate holds. By the execution of a process, a token
circulates along a ring. If a token arrives at a bottom process, the moving direction of a token is re-
flected by the bottom process. If two tokens collide, one token disappears and the other token remains.
Thus, if there are more than one tokens on the ring then the number of tokens decrease by collisions
of tokens and eventually the number of tokens become one. Since the number of tokens is at least one
by the construction of the algorithm, the number of tokens in a ring become one which is a legitimate
configuration? He showed algorithms which requifé states (wheré{ > n andn is the number of
processes), 4 states, and 3 states.

It is desirable that there is no exceptional process in a distributed system. A distributed system is
uniformif every process has the same algorithm and no process identifier. Dijkstra showed that there
is no uniform deterministic self-stabilizing mutual exclusion algorithm on a ring network whose size
is composite[Dij82]. (The same result can be seen in [BP89].) Burns and Pachl proposed a uniform
deterministic self-stabilizing mutual exclusion algorithm on unidirectional ring networks whose size is
prime assuming state communication model under c-daemon. The proposed algorithm®¢ggijre
states for each process, and then, they showed a method of reducing the number of states. Finally, they
obtained an algorithm requiring approximatel// In » states. It is shown by Ceger that a determinis-
tic self-stabilizing mutual exclusion algorithm assuming state communication model under c-daemon
require at least—1 state [Bur94]. Burns and Pachl pointed out that there is a gap between lower bound
and upper bound of the number of states and this is still an open problem. Recently, Huang proposed a
uniform deterministic self-stabilizing mutual exclusion algorithm on bidirectional rings [Hua93]. His
algorithm is a composition of a leader election algorithm and Dijkstra’s self-stabilizing mutual exclu-
sion algorithm. Since the ring is uniform, a distinguished process assumed by Dijkstra’s algorithm is
elected by a leader election algorithm. The number of states that Huang’s algorithm reggiires is

Since determinism and uniformity are strong requirements for self-stabilizing systems, self-
stabilizing systems with relaxed requirements has been proposed. In addition, not only ring networks
but general networks are also considered in other researches.

Israeli and Jalfon proposed a self-stabilizing mutual exclusion algorithm on general networks by
random walk of token [I1J90]. A process which have a token can be considered as having a privilege to
enter a critical section and it sends a token to a neighbor process which is randomly chosen. A token is
eliminated when two tokens collide. Even if there are more than one tokens in a network, it is expected
that they collide with high probability. They showed that (1) the upper bound of the expected steps that
the number of tokens converges to one, and (2) the (exact) expected steps that the number of tokens
converges to one in the case that the network is a bidirectional ring.

Dolev, Israeli and Moran proposed a semi-uniform self-stabilizing mutual exclusion algorithm on
general networks [DIM90, DIM93]. They assumed a special process in networks. Their algorithm
is dynamic in the sense that it tolerates changes of networks (addition and/or removal of processes
and links) during execution of the algorithm provided that a special process never removed. Their

2A system state (tuple of states of all processes) is caltahtiguration Formal definition is given in the next section.
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algorithm is composed of two self-stabilizing algorithms: a self-stabilizing spanning tree algorithm
and a self-stabilization mutual exclusion algorithm based on random walk of a token on a spanning
tree.

Nishikawa, Masuzawa and Tokura proposed a uniform self-stabilizing probabilistic leader election
algorithm on tree networks and complete networks [NMT92]. It is observed that the self-stabilizing
mutual exclusion cannot be solved deterministically on symmetry networks [Dij74]. The proposed
algorithm by Nishikawa et al. uses randomization to break a symmetry. They showed that a compo-
sition of their uniform self-stabilizing leader election algorithm and semi-uniform mutual exclusion
algorithm proposed in [DIM9Q] yields a uniform mutual exclusion algorithm.

Herman proposed a uniform self-stabilizing probabilistic mutual exclusion algorithm on ring net-
work whose size is odd in [Her90]. He assumed that every process is executed synchronously. Each
process has only one bit as a state, i.e., the number of states is two.

Not only using randomization to provide self-stabilizing property, a special network topology is
proposed. For instance, Ghosh proposed a deterministic self-stabilizing mutual exclusion algorithm
and on a special network topology in [Gho91].

6.3 Preliminaries

In this section, we give formal definitions of concepts and terms used in the self-stabilization approach.

6.3.1 The process and network model

A unidirectional uniform ring systens a triple, R = (n, J, Q) wheren is the number of processes in
the systemy is a transition algorithmg is a finite set of state of process. The processes are arranged
on a ring, i.e., processd%, P, ..., P,_1 are arranged in a clockwise manner. (Right is clockwise
direction and left is counterclockwise direction.) L@t be the state set of proce$s. Note that
Q; = @, for all 4, j, but we use this notation for the simplicity of explanation. The systems is called
uniformsince the) and@ are the same for every process.

A configurationof R is ann-tuple of a state of processes; a state of prodess ¢; € Q; then
a configuration of the system i = (qo, 41, .--,qn—1). LetT be the set of all configurations, i.e.,
I' = Qo x Q1 X --- x Qr_1. The transition algorithnd of a process is given by a set gfiarded
commands

IF (guard) THEN (command)
IF (guard,) THEN (command)

IF (g;Jarqn) THEN (commang},)

Guards are predicates(q¢;, ¢;—1) and commands are assignment statemgnis: f;(gi, gi—1). A
uniform ring system is called endomized uniform ring systeifrandom bit generator is used in a
command. To describe randomized behavior of processes when we write algorithms, we assume that a
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random bit generator is provided as a primitive function. Especially, the uniform ring system is called
adeterministic uniform ring systeifirandom bit generator is not used in any commands.

A bidirectional uniform ring systeris defined similarly. Guards are predicaig$q;, ¢i—1, ¢i+1)
and commands are assignment statemgnts f;(¢;, ¢i—1, ¢i+1)-

6.3.2 Scheduling of processes

It is said thatP; has gprivilegeat a configuratiory if and only if g;(g;, g;—1) for somel < j < m. P;

can execute (change state) only when it has a privilege. In general, there exists more than one process
which have privilege. In this dissertation, we consider the following types of scheduler in order to
choose processes to be executed:

e c-daemon (central daemon) — the scheduler chooses any process among privileged processes
and let the process execute.

e c-dragon (central dragon) — the scheduler chooses a process among privileged processes with
uniform probability and let the process execute.

A scheduler chooses a process which has a privilege and executes a command whose guard is true.
Even if more than one one guard is true, only one command is chosen and be executed. After the
execution, assume that the stateg®is changed t@. Then, the configuration becomes

71 = (QO7 q1s -3 Qi—159, Qit15 -y QWL)

This relation between configurations is denotedchby- +’. The transitive closure of the relatien

is denoted by—*. To explicitly describe that the transition is made by procBssve write E A
computationor atransition sequencé starting fromry, € I' is an infinite sequence of configuration
“,71, .., wherey; — ;44 forall j > 0.

6.3.3 The self-stabilizingk-mutual exclusion problem

Let A be a set of configurations of a uniform ring systéin= (n,J, Q). A deterministic uniform
ring systemR is adeterministic self-stabilizing mutual exclusion sysfemA if and only if all of the
following conditions hold:

e No Deadlock: For any configuration € T, there exists at least oné € T such thaty — +'.
e Closure: Foranyy € Aand) €T, v — ' implies thaty’ € A.

e No Livelock: For anyy, € I" and any (infinite) computatioh = ~g, 1, ..., there exists g
such thaty; € A.

e Fairness: For any)\q € A and any (infinite) transition sequende= )\, \1, ... and any process
P; (0 < i < n), there exists infinite transitions made By.
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e k-mutual Exclusion: For each configuration € A, the number of processes which have a
privilege at) is exactlyk.

The set of configurationd is called a set ofegitimate configurationsince the system takes a
configuration inA when the system is stabilized.

A randomized uniform ring systerR is arandomized self-stabilizing mutual exclusion system
A if and only if all of the following conditions hold:

e No Deadlock: (same as deterministic version)
e Closure: (same as deterministic version)

e No Livelock: For anyy, € T, let D be the set of all possible (infinite) computatidti =
6,71, --- andd; be the smallest index of configuration such thate A for eachA’. Then, the
expected value of; for eachA? € D is finite.

e Fairness: (same as deterministic version)

e Mutual Exclusion: (same as deterministic version)

When a ring systenk = (n, d, Q) is self-stabilizing mutual exclusion systems forthe systent
is denoted by four tuplé = (n,d, Q, A).

We define a self-stabilizing-mutual exclusion problem with additional requirement. Li¢h) be a
set of processes which have a privilege at a configuratiandV be a any set of processesType-2
self-stabilizingk-mutual exclusion problens a problem such that there exists a computation starting
from any legitimate configurations€ A which reaches a configuration, wherell(\') = V. Type-1
self-stabilizingk-mutual exclusion problens a problem without this requirement. Note that type-1
and type-2 are the same when-= 1.

Type-2 problem requires that there must exist a computation which reaches any arrangement of
privilege from any legitimate configuration. As we will show, there is no algorithm which solves
type-2 problem on unidirectional rings.



Chapter 7

Self-Stabilizing Mutual Exclusion
Algorithms

7.1 Self-Stabilizingk-Mutual Exclusion Algorithms

In this section, we propose (deterministic) self-stabilizkagiutual exclusion algorithms under a c-
daemon on unidirectional and bidirectional ring networks. The solution is not trivial by the following
reasons. (1) If the number of tokens is less tlkarthe number of tokens must be increased. This
implies that token collision scheme cannot be applied simply. (2) When the number of tokens is exactly
k, collision of tokens must be avoided. (3) Otherwise, the number of tokens must be decreased.

Since it is easy to show that there is no self-stabilizirgnutual exclusion algorithm under a c-
daemon, we assume a fair schedule of a c-daeimdihe proposed algorithms are based on the
algorithm by Burns and Pachl’'s uniform deterministic self-stabilizing 1-mutual exclusion algorithm
[BP89]. First, we cite their algorithm and explain it because it is necessary in the proofs of our algo-
rithms.

7.1.1 Burns and Pachl's Algorithm

The self-stabilizingk-mutual exclusion algorithms proposed in 7.1.2 and 7.1.3 is based on the self-
stabilizing mutual exclusion algorithm proposed by Burns and Pachl in [BP89]. Before describing our
k-mutual exclusion algorithms, we cite Burns and Pachl’s algoriflgre= (n, o, Qo, Ao) first. In the
rest of this section, we call Burns and Pachl’s algorithrBBs

Letn > 5 be the prime number of processes. A set of stat€gignd a state; € Qo of each
processP; is a tuplel;.t;, wherel; € {0,1,...,n — 2} andt; € {0} U{2,3,...,n — 2}. The first field
l; is calledlabeland the second fields is calledtag.

For the simplicity of description of the algorithm, we define the following predicates:

RA(Z) = (lz #li1+ ].) AN (lz £0Vit1=0Vt_1#l;i—li_1 Vi1 < ti),

1A schedule idair if a process which have a privilege is executed within a finite steps.
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Rp(i) = (Li=lLia+1)A (i1 #t) A #0)
A set of guarded commands of S is defined as follows.

Rule BP-A:

Rule BP-B:
IF RB(Z) THEN li.ti = li.tifl.

Arithmetic operations on labels and tags are computed moduid.
Legitimate configurations are configurations taking the following forms.

ol —2.0,1—1.0,1.0,1.0,1 4+ 1.0,1 + 2.0, ...

wherel is any label and underlined state is a state of which a process that has a privilege.
After execution of the privileged process, the configuration become the following configuration.

eyl —2.0,1-1.0,1.0,14+1.0,14+1.0,1 + 2.0, ...

Note that the privilege is moved to the right process.
The next lemma holds fa$, [BP89].

Lemma 1 The no deadlock property holds, i.e., there exists a profeshich has a privilege by Rule
BP-A or Rule BP-B at any configuration. |

Now, we define several terms used in this algorithm. (These terms are also used in the rest of this
section.) Letl;.t1,[>.to be states of two consecutive procesggsP, in clockwise oder on a ring
respectively. We say thd®, has agapif and only if i # {1 + 1(mod n — 1) is true and itgap sizes
defined byls — I1. A segments a maximal sequence of processes (P;, P,y1, ..., P;) which does
not include a process having a gap afd(P;) is called thehead(tail) process ok. For a segment
s = (P, Pita, ..., Pj), we say that the segmentigll formedif and only ift, = /;41 —1;( mod n—1)
holds for everyr (i <« < j).

We describe the way of stabilization of the BP algorithm briefly. At a legitimate configuration, the
number of segments is 1 and the segment is well formed. For any initial configuration, the number
of segments is at most at the configuration. The application of Rule BP-A and Rule BP-B does not
increase the number of segments. Rule BP-A works as a movement of a privilege and decreasing the
number of segments if there are more than one. Rule BP-B works to make a segment well formed.
Even if a c-daemon try to keep the number of segments, every segments become well formed and there
is at least one process which cannot make a move. Thus, the number of segments decreases within a
finite steps until it become one.
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7.1.2 Unidirectional Uniform Rings

Now, we show a type-1 self-stabilizinggmutual exclusion algorithm on unidirectional rirfy =
(n,01,Q1,A1). We assume that > 5 is prime.

Algorithm SSUURK)

Let a state setb@, = {i.t}, I € {0,1,...,n—2}, t € {0} U{2,3,...,n — 2}. Each fieldl, ¢ are
calledlabel andtag respectively. A set of guarded commands is as follows. Note that a set of guarded
commands is given to eadh but it is identical for all processes.

First, we define the following predicates.

RA(Z) = (lz 7511;14-1)/\(&‘ #£0Vit1=0Vt_1#l;—li_1 Vi1 < ti),
RB(Z) (ll =11+ 1) N (ti_1 7& ti) A (ll 75 0)
Rule Uni-A:

IF R (i) THEN
li.ti = (li—l + 1)(l1 - li—l)-

Rule Uni-B:
IF Rp(i) THEN
llfl = li-ti—l-

Rule Uni-C:
IF(n—k<li<n—2)A=(Ra(i) vV Rp(i)) THEN
do nothing

The arithmetic operation for labels and tags are computed medula.
A set of legitimate configurations is a set of following configurations.

sl —2.0,1—1.0,1.0,1.0,1 4 1.0,1 + 2.0, ...,

for any labell. O

Now, the correctness of this algorithm is presented.

Lemma 2 At any legitimate configuration, there are exadtlprocesses have privileges, i.e-mutual
exclusion property holds. In addition, closure property also holds.

(Proof) LetA € A; be any legitimate configuration, which can be expressed as
ol —2.0,1—1.0,1.0,1.0,1+1.0,1 4+ 2.0, ...

for somel. Let P, be a process which has a privilege\dby Rule Uni-A andly.t, be the state of.
(Note thatty = 0.)
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o lflpe{n—k,..n—2}
ForeachH € {n—k,...,lo—1,lo+1,...,n—2}, There exists exactly on such thai; = [ and
it has a privilege by Rule Uni-C. There exists two processes such thal, holds. One of them
has a privilege by Rule Uni-C and another has a privilege by Rule Uni-A. Thus, the number of
processes having a privilege by Rule Uni-Ckis- 1, and none of these iB,. Thus, exactlyk
processes have a privilege.

Since a configuration never change by executions of Rule Uni-C, we consider only executions
of Rule Uni-A by P,. Let~’ be the next configuration,’ takes a form of

ol —2.0,1—1.0,1.0,14+1.0,1+1.0,1+ 2.0, ..
which is a legitimate configuration. Therefore, closure property holds.

o lflogg{n—k,..,n—2}
Foreach € {n — k,...,n — 2}, there exists only on&; such that; = [. Thus, the number of
processes which have a privilege by Rule Uni-& is 1 and none of them i$,. Thus, exactly
k processes have a privilege. The closure property can be shown by the same proof given above.
O

Lemma 3 The fairness property holds.

(Proof) By the definition ob1, there exists exactly one proce8svhich has a privilege by Rule Uni-A

at any configuratiork € A;. By the assumption of the fairness execution of processes by a c-daemon,
P is executed within a finite steps. Then, a process which has a privilege by Rule Uni-A moves to the
right process. O

Lemma 4 The no deadlock property holds.

(Proof) Since each guard of Rule Uni-A and Rule Uni-B is the same as that of Rule BP-A and Rule
BP-B by Burns and PachI[BP89]. Thus, by the same proof for no deadlock property shown in [BP89],
the no deadlock property of proposed algorithm is shown. O

Now, we have the following theorem.
Theorem 8 S; is a type-1 self-stabilizing-mutual exclusion system.

(Proof) Since Rule Uni-C never change the configuration, we do not consider executions of Rule Uni-C
without loss of generality. (Note that we assume a fair c-daemon.) There is no configuration such that
every privilege is a privilege by Rule Uni-C and there exists at least one process which have a privilege
by Rule Uni-A by the discussion in Lemma 4. Thus, for any configuratighe configuration reaches

~1 such that

sl —2.0,1—1.0,1.0,1.0,1+ 1.0,1 + 2.0, ..
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by the same proof given in [BP89]. This is a legitimate configuration. O

Next theorem claims that there exists no algorithm for the tygenr2utual exclusion problem on
unidirectional rings.

Theorem 9 For eachn > 6 andk, (3 < k < n — 3), there exists no type-2 self-stabilizikgmutual
exclusion algorithm on unidirectional ring of size

(Proof) Assume that there exists a type-2 self-stabiliZzirgutual exclusion algorithm on a unidirec-
tional ring. LetA be a set of legitimate configurations ahgl € A. Then, there exists a legitimate
configuration\; € A and a computation, —* \; such that consecutiveprocesses have a privilege
at ).

Without loss of generality, processés, Py, ..., P,_1 have a privilege al\;. It is easy to see that
locations of privileges never change by execution®of0 < i < k — 2). (Otherwise, the number
of privileges become less thd@n) Thus, the movement of privilege happens only wii&gn; loses
a privilege after several executions Bf ;. Then, P, has a privilege next. By the same wdyj,
loses a privilege and theR;; has a privilege. This is repeated unBl,_; has a privilege. Note
that any executions aP; (0 < i < k — 2) do not cause a movement of privileges, since the ring is
unidirectional.

Now consider the following two cases.

o If k < |n/2]:
A configuration such that any two privileges amadngrivileges are not adjoining each other is
not reachable.

o If k> |n/2]:
A configuration such that any processes which do not have a privilege are not adjoining each
other is not reachable. O

Corollary 2 There is no self-stabilizing-mutual exclusion algorithm under a c-daemon fop> 2
but there exists algorithm under a fair c-daemon.

(Proof) Assume that there exists an algorithm under a (non-fair) c-daemor?L£t, ..., P, be

a processes in clockwise on a ring. Consider a legitimate configuration at which pféchas a
privilege. Execute?, until it loses a privilege. It does lose a privilege because the fairness property is
not satisfied (consider a schedule executing dify A privilege moves to its right proceds. Do

the same thing foP;. Then the privilege moves to the right. Repeat this procedure until a privilege
does not move any more. (A privilege do not move at some praéessthin a finite steps; otherwise
privileges collide and the number of privileges decrease.) Then, execut@or®ther process do not
have a chance enjoying privilege; the fairness property is not satisfied. O
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Note that forn > 5 is prime, S; is a self-stabilizing system for the type-2 problenkit= 2,n —
2.n—1,

7.1.3 Bidirectional Uniform Rings

We propose a type-2 self-stabilizikgmutual exclusion algorithn$; on bidirectional rings for size
n > 5is prime. The proposed algorithm is based on the following idea. Consider a bidirectional ring
consistingk tracks(rings). Each process execute the 1-mutual exclusion algorithm for unidirectional
rings proposed by Burns and PachI[BP89] in parallel for each track. A process has a privilege when it
has a privilege at least one track in the sense of Burns and Pachl’s algorithm. If each track are executed
infinitely often, each track stabilizes and the number of privileges become one for each track. Then,
the number of privilege become at mdstin the ring. To satisfy &-mutual exclusion property, the
number of privileges must be exactlywhich implies that no process has a privilege at most one track.
The definition ofSy = (n, d2, Q2, A2) is shown below.

Algorithm SSBURK)

Letthe state setb@, = {(I].t},12.t2, ..., 1F.tF) | It € {0,1,...,n—2}, 1 € {0}U{2,3,...,n—1}},
andI'; be a set of all configuration.

A set of guarded commands is defined as follows. Let a configuration b&, g1, ..., ¢n—1),

qj = (11.t1,12.42, ..., 1%.¢%). To make the description simple, we define the following functions and

/A R B R B
predicates:
Ra(i,j) = (AU + DA AOVE =0V A1 Vi, | <t}),
Rp(i,j) = (L=1_,+1) At #t) A1 #0),
S,() = {il(1<i<K)AQ=I,),
T = [5()l and
Rs(j) = JI G =60+ DA =E) V(=60 A0 =1+1)

1<i<k

V(I =G0+ D) A (G =15+ 1))}
AV J(1<i<kj—1<j5 <j+1)[t; =0]
ANmjp > 1

A transition rulesﬁg for a process’; is as follows. (Though process identifigrs 1, j, j+ 1 appears,
&) = &) foranyj, ;')

Rule Bi-A:
IF —=Rs(j) A Ji(1 < i < k)[Ra(i,j)] THEN
For each’ such thatR 4 (i, j) is true:
s o= (U +1).(t% —t5_y),
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For each’ such thatRg (', j) is true:

Y Y
7 YN ) 7
=1

Rule Bi-B:
IF Rs(]) AN (ﬂ'j = ].) AN (7Tj+1 > 1) THEN
do nothing.

Rule Bi-C:
IF Rs(]) VAN (ﬂ'j = ].) AN (7Tj+1 = 0) THEN
Fori’ = min S, (j):
s o= (U5 +1).(t =t ).

Rule Bi-D:
IF Rs(]) AN (ﬂ'j > 2) AN (7Tj+1 > T — 1) THEN
do nothing.

Rule Bi-E:
IF Rs(]) A (ﬂ'j > 2) A (7Tj+1 <7 = 1) THEN
Fori’ = min S, (j):
s o= (5 +1).(t =t ).
Rule Bi-F:
IF 3i(1 < i < k)[Rp(i,5)] THEN
For each’ such thatRz (7', j) is true:

VA VA
7 (r— ) 7
L =

A legitimate configuratiorh € A, is as follows: (1) Each track is in a legitimate configuration in
the sense of BP, (2) each procégshas a privilege of BP at most one track. A set of legitimate con-
figurationsA; is the set of the following configurations. Let= (qo, g1, ---, ¢n—1) be a configuration
such thay; = (1.t},13.t3, ..., 15.t%). Then,y € A if and only if the next condition holds.

o Vi, j[t} = 0],

e Foreach, (I§,1%,...,I! ;) is acyclic shift of (1*, I, 1* +1,1* + 2, ..., + n — 3,1* + n — 2) for
somel’. (Arithmetic operation is computed moduto— 1.)

« Foreachy, [{i |l = 1 ,}| < 1. -

Now, the correctness proof 6% is presented below.
Lemma 5 The number of processes which have a privilege is exaetany legitimate configuration.

(Proof) It is clear by the definition of the set of legitimate configurations. O
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Lemma 6 The closure property holds.

(Proof) LetA € A, be any legitimate configuration. The guards of Rule Bi-B or Rule Bi-C are true at
processes which have a privilegeat (If the right process has a privilege then it has a privilege by
Rule Bi-B. Otherwise it has a privilege by Rule Bi-C.) Assume that a proBgs#ich has a privilege.

e The case thaP; had a privilege by Rule Bi-B:
The next configuration is the samejas

e The case thaP; had a privilege by Rule Bi-C:
After application of Rule Bi-CP; does not have a privilege ari¢}; has a privilege at a track
in the sense of BP. This configuration isAn. |

Lemma 7 The fairness property holds.

(Proof) Let A € As be any legitimate configuration. At a configuratidnthere exists processes
P,, Py, ... such that their right processes do not have a privilege since n. These processes
P,, Py, ... have a privilege by Rule Bi-C. (Other processes which have a privilege is by Rule Bi-C.)

The application of Rule Bi-B does not change the configuration. By the fairness assumption of a
c-daemon, a proceds amongP,, P,, ... is executed within a finite steps. After execution of process
P, it loses a privilege and the right process®fhas a privilege instead. Thus, the movement of
privilege within a finite steps is guaranteed by the fairness of a c-daemon. Therefore, every process
has a privilege infinitely often in a infinite computation. Note that fairness property does not hold
without fairness of a c-daemon. O

Lemma 8 The no deadlock property holds.

(Proof) Assume that a configuratiane I'; is a deadlock configuration, i.e., guards of rules are false

at every process. Since the number of process is prime, the same proof of no deadlock property of
Burns and Pachl’s algorithm (Lemma 4.3 in [BP89]) can be applied to this lemma. Thus, at least one
of guards of Rule BP-A or that of Rule BP-B is true at some process. If the guard part of Rule BP-B is
true at some tracks, a privilege by Rule Bi-F exists; a contradiction. Ther&fatg,R 4 (4, j)] is true.
Leti, jo be integers such thd 4 (4o, jo) is true.

e WhenRs(jo) is true:
SinceV, g, ¢, b, g (Guard of Rule Bir) = Rs(jo), one of guards of Rule Bi-B, Bi-C, Bi-D
and Bi-E is true; a contradiction.

e When—-Rgs(jo) is true:
The guards of Rule Bi-A is true; a contradiction. O

Next lemma is shown in [LS92].
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Lemma 9 Letm,; be the number of gaps of thieh track andg; (: = 0,1, ..., m — 1) be gaps of the
i-th track. ThenZ;’!Olgj =m — 1(mod n — 1).

Lemma 10 There is no configurations such that all privileges are privileges by Rule Bi-B and/or Rule
Bi-D.

(Proof) Assume that there is a configuratigrat which all privileges are privileges by Rule Bi-B
and/or Bi-D. Since algorithm BP is livelock free, there exigtsuch that the guards of Rule BP-A
(= Ra(i, 7)) or that of Rule BP-B£ Rp(i, 7)) is true for each track. If we assume that the guard

of BP-B is true for some, j, then the guard of Bi-F become true and it is a contradiction. Thus, the
guard of BP-B is not true at each track, i.eRz (3, j) is true for allé, j.

e The case that the guard of Bi-B is true/at
SinceRs(j) is true, there existssuch that? , = I} is true andt’, , =t} = 0is true. Thus
we haveR 4 (i, j + 1) is true. If we assume thatRs(j + 1) is true then the guard of Rule Bi-A
is true; a contradiction. Thu®s(j + 1) is true, which implies that one of guards of Rule Bi-B,
Bi-C, Bi-D and Bi-E is true. (Note that logical-OR of guards of Rule Bi-B, Bi-C, Bi-D and Bi-E
is Rs(j).) Therefore P, has a privilege by Rule Bi-B or Rule Bi-D by assumption.

e The case that the guard of Rule Bi-D is truetat
There exists such that}, , = I} is true sincer; > 1, andR(i,j + 1) is true sincet}, , =
t; = 0. By the same reason discussed abd¥g, has a privilege by Rule Bi-B or Rule Bi-D.

By above discussion, every process has a privilege by Rule Bi-B or Rule Bi-D. YhysRs(j) A
—Rp(i,7)] is true. Since every gap size is O for each track, the sum of all gap sizes is 0 for eack track.
By the definition ofRs(j), each track has at most— 1 segments. By this fact and by lemma 9, the
number of segments at each track is 1. Thus, we Bgve < k. On the other hand, iRs(j) is true
thenr; > 1is true, which implies;7; > n; a contradiction. O

The next lemma shows that if each track is legitimate then the entire ring will reach a legitimate
configuration within a finite steps.

Lemma 11 For eachi (1 < 4 < k), assume that theth track is in a legitimate configuration in the
sense of BP at a configuration. Then, for any computatioA starting fromy, such thatA = vy —
v — - -, there exists a finite integersuch thaty, € A,.

(Proof) The behavior af; when each track is legitimate in the sense of BP is the same as the behavior
of the following (self-stabilizing) system§;. The systemS; consists of a bidirectional ring of size

n and its algorithm is described below. Each procEgsakes the following stater; (0 < m; <

k, E;?;(}wj = k < n).2 The algorithm ofS; works to maker; be at most one at any configuration.

2Although the network o653 is a bidirectional ring, the next state of a process is determined by its state and the state of its
right process. In a strict sense, definition%f does not match the definition of the self-stabilizing system defined in Chapter 6.
The (another) definition of self-stabilization f8% is omitted because it can be defined similarly.
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The legitimate configurations are configurations sucha@hstz; < 1 for eachj. We say thai®; has
atokenif and only if -; > 1 andm; is calledthe number of tokensf P;. The algorithm (transition
relation) of S is as follows.

Rule Bi-B’:
IF (7Tj = 1) A\ (7Tj+1 > ].) THEN
do nothing.
Rule Bi-C’:

IF (7'(']' = 1) A (7Tj+1 = O) THEN

Ty = 07 Tj+1 = 1.

Rule Bi-D’:
IF (7'(']' Z 2) AN (7Tj+1 Z Ty — 1) THEN
do nothing.

Rule Bi-E'":
IF (7Tj > 2) A (7Tj+1 < T = 1) THEN

mj =T — 1, Mjp1 = Mj41 + 1.

It is easy to see théﬁ?;ole = k always holds by the definition of the algorithm. Now, we show
that self-stabilizing properties ¢fs.

No deadlock property:

At ainitial configuration ;?:‘Ole =k, 2 < k < nholds and Bir is true at procesg; for somej and
somer € {B’,C',D',E’ } sinceV, g c o e }(The guard of Rule Bir) = (r; > 1). Next, we show

that a configuration such that all privileges are privileges by Rule Bi-B’ and/or Rule Bi-D’ does not
exist. Assume the contrary. Lét; be a process which has a privilege by Rule Bi-B’ or Rule Bi-D’.
Then, we haver;; > 1. Thus,P;;, also has a privilege. By assumption, the privilegé’pf, is also

a privilege by Rule Bi-B’ or Rule Bi-D’. By repeating this argument, we conclude that every process
has a privilege by Rule Bi-B’ or Rule Bi-D’, which contradicts the fact tﬂgtgole =k <n.

Closure Property:
Every privilege at a legitimate configuratioris a privilege by Rule Bi-B’ and/or Rule Bi-C'. It is easy
to see that a configuration aft®iis also a legitimate configuration.

No livelock property:

Assume that a livelock happens. By the proof of no deadlock property, we can conclude that at least
one process have a privilege by Rule Bi-C’ or Rule Bi-E’. For a configuratien (qo, ..., gn—1), we
definedM () = max{m; | 0 < j < n}. For anyy’ such thaty —* +/, it is clear thatM/ (y") <

M (v). By assumption, there exists a configuratidrand a computatior\ starting fromry’ such that

My = M(y') = M(y") > 2forall v/ —* ~”. More over, there existg” such thaty’ —* +" in the
computationA, the number of processé} such thatr; = M is the same at all configurations after
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7. Let J be a set ofj such thatr; = My andr; 1 < My aty”. Sincek < n, we haver; # M, for
somei (0 < ¢ < n). In addition, consecutive processes at whigh= M, holds excep; (j € J) do
not have a privilege by Rule Bi-C’ nor Rule Bi-E’.

¢ The case thaP; has a privilege by Rule Bi-D’ for eache J at any configuration aftey”:
If we assume that some proceBs (0 < i < n) applied Rule Bi-C’ or Rule Bi-E’ aftery”
thenr; 1 < m; was true before the execution of the rule. That is, a token is moved if the right
process has less tokens. Since a set of processes sugh thdt/y never change, the number of
applications of Rule Bi-C’ and Bi-E’ is finite and no process will have a privilege by Rule Bi-C’
nor Rule Bi-E’ within a finite steps; a contradiction.

¢ Otherwise, i.e., there exists a configuration aftéand; € J, P; has a privilege by Rule Bi-E’
at the configuration:
In this case, we have;;; < m; —1 = My — 1. UnlessP; apply a rule,7;,; does not
increase. Thus, onck; has a privilege by Rule Bi-E’, the privilege is not lost by the execution
of Pj;1. Therefore,P; applied Rule Bi-E’ within a finite steps by the assumption of fairness
of a c-daemon. After application of Rule Bi-E’ b¥;, the number of tokens oP; become
m; —1 = My — 1 and that ofP;; becomer;; +1 < M. Since the number of tokens of
other processes is the same, the number of processes whiclhawkens decreases by the
execution ofP;; a contradiction.

Therefore, we conclude that livelock never occurs andstheystem reaches a legitimate configu-
ration within a finite steps. g

Lemma 12 No livelock property holds fofs.

(Proof) By lemma 10, a livelock such that the same configuration is repeated does not occur. Thus there
is at least one process which have a privilege by Rule Bi-A, Bi-C, Bi-E or Bi-F. By the assumption
of fairness of a c-daemon, one of such process is executed with in a finite steps and the configuration
changes. Thus, we do not take the executions of Rule Bi-B and Rule Bi-D into consideration.

Assume that there exists a configuratipr I'; and a computatiorh which is a livelock computa-
tion. If every track reaches a legitimate configuration in the sense of BP, the entire ring also reaches a
legitimate configuration by lemma 11. Thus, we assume that there exists a configutdtion* +')
and thel-th track such that thé-th track is not a legitimate configuration in the sense of BP at every
configuratiomy” (' —* ~”) in the computatiom\ and thel-th track never change aftef. (Other-
wise, the track will be legitimate.) By the definition 8§, an application of Rule Bi-A or Rule Bi-C
or Rule Bi-E implies an application of Rule BP-A (and BP-B depending on the condition) for some
track, and an application of Rule Bi-F implies an application of Rule BP-B for some tracks.

Since at least one of Rule Bi-A, Bi-C or Bi-E is applied infinitely oftendnthere is a track which
is infinitely often changes its configuration; thus there exists a track which become legitimate in the
sense of BP within a finite steps. L&f be such a track with the smallest suffix. At theth track,
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a privilege is moved from left to right. If a procegshas a privilege by Rule BP-B at theth track
then Rule BP-B is applied wheR executes Rule BP-A at thig-th track; a contradiction. Thus, there
exists no privilege by Rule BP-B at theth track and exists only privileges by Rule BP-A.

Let J be a set of indices of processes which have a privilege ai-thetrack in the sense of BP.
Then,j € J, a process’; has a privilege by Rule Bi-E when it has a privilege by Rule BP-A at the
Ir-th track. Note that if the privilege aP; is a privilege by Rule Bi-A or Rule Bi-C then Rule BP-A
is applied at the-th track. This contradicts the assumption. (Sincefh¢h track is in a legitimate
configuration in the sense of BP and a privilege is circulating by Rule BP;Aas a privilege except
Rule Bi-B or Rule Bi-D whenP; has a privilege by Rule BP-A at thig-th track.) In addition]y < I
holds by the definition of Rule Bi-E. SincBg(j) is true atP;, the number of segments at tiieh
track is at most. — 1. Because) | = ¢} = ¢/, = Ois true for eacly € J and there is no privilege
at the-th track, if we assume that the number of segments af ttietrack is 1 then all tags at the
1-th track are 0, which implies that the track is well formed in the sense of BP and it is a contradiction.
Thus the number of segments of theh tracks is2 < s < n — 1 and the gap size &; is 0 for each
processP; which has a privilege by Rule BP-A at tieth track.

By lemma 9 and the fa@ < s < n — 1, there exists a gap whose size is not 0. In other words, if
Jo, 91, -+ gs—1 1S @ sequence of consecutive gap sizes in clockwise order then therehesigtls that
gn # 0. If Py has a gag, then Py does not have a privilege by Rule BP-A. The reason of this fact
is described as below. Consider a configuration at which a privilege by Rule BP-A Rf-thdrack.

If Py has a privilege by Rule BP-A at thieth track thenRs(H) become false since the gap size is
not 0 and Rule Bi-A is applied which implies that the configuration offitik track is modified. This
contradicts the assumption.

Thus,—Ra(I,H) = (L, = 0) A (t5,_, #0) A (14, # 0) A (¢, > tL,) is true atPy. By this
fact, a label of the leftmost process in a segment whose gap size is not 0 is 0.

Let a segmens be a segment whose gap size is not 0 and its left segfhanhas a gap size 0. (It
is clear that such segment exists by the above discussion.) By the assumption, the head¥prokcess
S has label 0 and its left proce$s ; (i.e., the tail process of_;) has non-zero label and non-zero
tag. Thus,S_; contains a process whose label is 0 and the lengt$_gfis more than one since the
guard of Rule BP-B is false at every process. The sequence of labels Bttheack (starting from
the label of Py) is as follows.

il g, s lan, o2, 03, 00031, 03,2, 13,3, .

wherel; ; = 0 andl; ; < [; ;41 holds for each, j. That is, the sequence of labels is sequences of
non-decreasing sequences starting from 0.

Assume that the head processiof of the segmen$_; has label 0. Then, the guard of Rule BP-A
is true since the gap size 6t ; is 0. Thus,L € J and the tag of?;, is 0. Each process does not has a
privilege by Rule BP-B and the number of processes which have a label 0 in each segment is at most
one since the number of segments is more than one. Thus, each process in the Segrhasta tag
0; a contradiction. Therefore, the label Bf is 0. But there is no such sequence of non-decreasing
sequences since the number of segments is more than one; a contradiction.



7.2. ASELF-STABILIZING 1-MUTUAL EXCLUSION ALGORITHM WITH RANDOMIZATIONT9

By above discussion, we conclude that each track reaches a legitimate configuration within a finite
steps. This fact and lemma 11, this lemma holds. O

We have the following theorem:

Theorem 10 S, is a type-2 self-stabilizing-mutual exclusion system far> 5 is prime. ]

7.2 A Self-Stabilizing 1-Mutual Exclusion Algorithm with Ran-
domization

In this section, we investigate the 1-mutual exclusion problem as a special casekeftiteal ex-
clusion problem. We consider the 1-mutual exclusion problem on unidirectional rings assuming state
communication under a c-daemon and a c-dragon and propose uniform 1-mutual exclusion algorithms.

Since the ring is unidirectional, the solution is not trivial. If the ring is bidirectional, random walk
of tokens can be used to stabilization of the number of tokens as described in [IJ90]. However, a
unidirectional ring under a c-daemon cannot use random walk method because the movement of token
is one direction (i.e., the choice for a processes is moves the token right or not) and a c-daemon may
choose a schedule of processes not to collide tokens.

It is shown that there is no self-stabilizing 1-mutual exclusion algorithm if the number of process
is composite[BP89]. We propose a uniform randomized self-stabilizing 1-mutual exclusion algorithm
for any size of ring. The proposed algorithm can escape the malicious schedule of a c-daemon and it
self-stabilizes with high probability without deadlock.

Before proposing an algorithm of randomized version, we propose a self-stabilizing deterministic
mutual exclusion algorithm under a c-dragon. Since the scheduler guarantees the probabilistically fair
execution of process, the algorithm is much simpler.

7.2.1 The self-stabilizing system under a c-dragon

In this subsection we investigate self-stabilizing mutual exclusion systems on unidirectional ring under
a c-dragon.

Theorem 11 For eachn > 1, there exists a deterministic self-stabilizing system under a c-dragon.

(Proof) The caser = 1 is trivial. Burns and Pachl proposed a deterministic self-stabilizing mutual
exclusion system under a c-daemon fioe= 2 in [BP89]; their system also works correctly under a
c-dragon. Thus, we consider the casg 3.

The mutual exclusion system we propose is as follows. Let the stafg se0,1,...,n — 2}. Let
Py, ..., P,_1 be processes in the system (in clockwise order)gihe the state of procegs. Note that
we show a set of rules for each procégsbut every process have the same algorithm. The algorithm
of S,, is as follows:



80 CHAPTER 7. SELF-STABILIZING MUTUAL EXCLUSION ALGORITHMS

Rule: IF g;—1 +1+# ¢ THEN¢; := ¢;—1 + 1(modn — 1)

A legitimate configuration\ is a configuration such that only one process has a privilege Bor
example,
0,1,1,2,3,4,5,6,7,8

is a legitimate configuration when= 10.

If a processes’ has a privilege, we say th&t has a token. It is easy to see that (1) There exists at
least one token in the system at any configurations, and (2) The number of tokens never increase by
the execution of any set of processes.

By execution of a privileged process, it loses a privilege and a privilege may move to the right
process. Therefore, we can consider that a token moves to right. Consider a configuration at which
the number of tokens is more than one. kgand7; be any two different tokens. The distance of the
two tokens is defined by the minimum distance of processes on which tokens are. If two tokens are on
consecutive processes, the distance is one. If two tokens collide, the number of tokens decreases by
the definition of the algorithm. Because the scheduler (a c-dragon) chooses a privileged process to be
executed, we can regard the movement of tokens as random walk of tokens on a unidirectional ring.

Now consider any two tokens, 7; and fix them. Leti(r;, 73, y) be the distance of two tokens, 7;
at a configurationy. We considet!(;, 7;,) as a state of a Markov chain. Note that the state 0 is an
absorbing wall andn /2] is a reflecting wall. Since the probability of transition from state state
i — 1 and from state to state; + 1 are bothl/2 for eachl < i < [n/2]. Thus, itis easy to see that
the expected steps that two tokensr; collide is finite.

Since a c-dragon chooses a privileged process to be executed with uniform probability, the expected
interval steps that one of process corresponding to tokgns is executed is finite. Therefore, the
expected steps that every tokens collide is finite, which implies that the expected steps that the number
of tokens become one is finite. This is a legitimate configuration. O

7.2.2 The randomized self-stabilizing system under a c-daemon

In this subsection, we a propose randomized self-stabilizing system under a c-daemon. Burns and
Pachl [BP89] showed that the number of processes of a ricgrigpositethen there exists no de-
terministic self-stabilizing system under a c-daemon. As we saw above, the self-stabilizing mutual
exclusion system foeachn is easily obtained by assuming a c-dragon. The next interest lies in a
self-stabilization assuming a c-daemon: Which additional device is necessary for the existence of self-
stabilizing mutual exclusion system for everyunder a c-daemon? Our answer is that if each process
has a random-bit generator then the expected steps that the number of privileges become one is finite
under any schedule.

The outline of reason why there exists no deterministic algorithm is as follows[BP89]: Wher¢
is compositen can be decomposed as= xy, wherex,y > 2. We can construct a blocks of
processes of length and by choosing-th process in a block and executéh process of all blocks.
By this schedule, the number of processes having privilege is atde&stce the behavior of process



7.2. ASELF-STABILIZING 1-MUTUAL EXCLUSION ALGORITHM WITH RANDOMIZATION81

is deterministic, a c-daemon can choose a schedule of execution of processes toskeapedry

of configuration. The case explained above, configurations consistblotks of lengthh. To break
symmetry of configurations by malicious scheduling of a c-daemon, randomization is added to process
behavior.

7.2.3 The randomized self-stabilizing 1-mutual exclusion algorithm

We show a self-stabilizing mutual exclusion algorithm for a ring sizét is shown that there exists
a deterministic self-stabilizing algorithm for a ring of sizén [BP89]. The case fon = 1 is trivial.
Therefore, it is enough to consider the case 3.

The idea of proposed algorithm is based on a algorithm by Burns and Pachl [BP89]. A state set of
processes is a 3-tuplé.r. The first field of states is callddbel, the second is callethg, and the last
is calledrandom signatureTo stabilize the ring, we add a toss-a-coin feature to each process to break
a symmetry of ring (with high probability) in spite of a c-daemon. The random signature is a signature
of a segment which is randomly generated. To break a symmetry of the ring, signatures of segments
are compared.

Now we describe a formal definition of proposed algorithm. A state set of procesgessrig | €
{0,1,2,....,n—2},t € {0,2,3,...,n— 2}, € {0,1}}. We define following predicates:

Ay = LiFLa+D)ANG#OVE=0VE#FLi =L Vi <tioq)
B = (L=La+1)A{ti#ticaVri#riz1) Al #£0)

Ci = ~ANl#FLa+)AN=ti1)A(ri <ricr)

a; = (li_1=n-2)

The algorithm is described below. The procedure RandomBit() generates a random bit (i.e., 0 or 1)
with the same probability /2.

Rule A: IF A; A a; THEN
li=lL_1+1
ti =1 — i1
r; := RandomBit()

Rule A IF A; A —a; THEN
li=lL_1+1
b=l — i

Ti =Tl

Rule B: IF B; THEN
bi = ti—1

Ty == Ti—1
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Rule C: IF C; THEN
li=1li_1+1
ti=1li—li—1

Ty == Ti—1
A legitimate configurations is a configuration such that
ey 1 —=2.00r_3,1 — 1.0.r_2,1.0.r_1,1.0.r9, 1 + 1.0.71, 1 + 2.0.79, ...

for somel € {0,1,...,n — 2}. In addition, each legitimate configuration must be the following form
as to random signature.

n—3.0.r,n —2.0.r,0.0.7",1.0.7", ..., 1.0.7", 1.0.7, 1.O.7, ...

for r,' € {0,1}. That is, processes between a process having label 0 and the left process of a
privileged process have the same random signature. The other processes (i.e., processes between a
privileged process and a process having label 1) have the same random signature. For instance, a
configuration

5.0.0,6.0.0,0.0.1,1.0.1,2.0.1, 2.0.0, 3.0.0, 4.0.0,

is a legitimate configuration when= 8.

Correctness proof

Before showing the proof, we define several terms used in the following proof2L.ét, ..., P, 1
be a consecutive processes in a clockwise order on the ring; and; be a state of process,. A
segment is a sequence of consecutive processesP,, P, .1, ..., P, such thai; = [;_; + 1 for each
t=a+1l,a+2,..,bandl, # l,—1 + 1 andl,;1 # I, + 1. Lett(y) be the number of segment
at~y. We say that there is gap between processdd, and Py, 1 if I,11 # I, + 1. Thegap sizeof a
segment = P,, P11, ..., Py iSlp11 — lp. A processP, (F,) is called ahead procesgatail proces$
of s. Asegments = P,, Py11, ..., P is well formedif (¢t; = ¢t;—1 Ar; = r;—1) V (I; = 0) for each
i=a+1,a+2,...,bandt, = lp11 — lp.

Now, we give the correctness proof of proposed algorithm.

Lemma 13 For any configurationy € T", the number of segments is at least one.

(Proof) It is clear because the possible labelsrarel. O

Lemma 14 The algorithm is deadlock free.

(Proof) Assume that deadlock happens. kdie any deadlock configuration. Since logical OR of
guard of all rules is4; vV B; Vv C;, a condition—A; A —=B; A =C; holds for every processat~y. For
every head process of asegmént: 0 A t; #O0At; =1; — l;—1 ANt; > t;—1 holds because 4; and
l; # l;—1 + 1. Thus, for every segmeatat~, Headg) has label 0.

The number of segments is at least 1 by lemma 13, we consider following two cases.
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e When the number of segments is 1:
The tail process has label 0 because the number of segment is one and the head process has label
0. Thereforet; = 0V t; # 1; — [;_1 is true at the head process sirige- [;_; = 0.

By definition of Rule A and Rule A, the head process has a privilege by Rule A or Rule A; a
contradiction.

e Otherwise:
Because the number of segments is more than one and every head process has label 0, a process
whose label is 0 is a head process. Since no process has a privilege by Rule B, every process in a
segment has the same tag and random signature, which contradicts the factthat; holds
for at head process of every segments. O

Lemma 15 Closure property holds.

(Proof) Let)A be any legitimate configuration. By the definition of rules, itis clear that the head process
of the only segment always have privilege by one of Rule A or Rule A. It is easy to see that the next
configuration of\ is also a legitimate configuration. O

Lemma 16 Fairness property holds.

(Proof) Let\ be any legitimate configuration. By the definition of legitimate configurations, the num-
ber of processes which have a privilege is one and by lemma 15, the privilege moves to a right process
by a execution. Therefore, the privilege circulates the ring. O

Lemma 17 Mutual exclusion is guaranteed.

(Proof) Itis clear by the definition of legitimate configurations. O

Above lemmas proves four property of self-stabilizing systems. We prove that the expected steps
the system stabilize is finite.

Lemma 18 Lety, € I' be any configuration and = g, 1,72, ... be any infinite computation
starting from~y,. Then, there exist$ < I < oo such that a transition;; — v;41 is an application of
Rule A or Rule A’ or Rule C.

(Proof) Assume that there existg € I" and an infinite computatiod = ~y, 1,72, ... such that a
transition~; l>j+1 is an application of Rule B for each> 0. Application of Rule B never change
members of segments and changes only a tag. By definition of Rule B, a tag does not propagate over
a gap (and label 0). Thus, for any segmerthe number of applications of Rule B feiis finite if no

other rules are applied and there exists a configuratjosuch thaty, —* ~; and there is no privilege

by Rule B aty;.



84 CHAPTER 7. SELF-STABILIZING MUTUAL EXCLUSION ALGORITHMS

Because the algorithm is deadlock free (by lemma 14), there exists a process that has a privilege and
the privileges are privileges by one of Rule A or Rule A or Rule C. Therefore, one of these rules are
applied. O

Lemma 19 The configuration reaches a legitimate configuration within a finite steps if the number of
segments at an initial configurationis one.

(Proof) Lety € T" be any configuration of which the number of segments is one. It is easy to see that
the number of segments is non-increasing by the definition of algorithm. Thus, foy any® such

thaty —* 4/, the number of segments @t is one. By lemma 18, the head process executes one of
Rule A, Rule A, or Rule C. By execution of any of these rules, the head process changes and the label
of the new head process increases by one. Therefore, within a finite steps,ftbmconfiguration
become a configuration such that the label of a head process of the segfnérmtithis configuration

be~y and let processes &, Py, ..., P,_; in clockwise order in the ring anH is the head process at

7o0-

By lemma 18P, executes one of Rule A, A or C and its tag and random signature become the same
asP,_1’'s. Note that the tag is zero. Let the configuration afigexecuted a rule beg,. Similarly, P
executed a rule and its tag and signature become as the sdmeR@peating this argument, it is easy
to see that the configuration become the legitimate configuration. O

Lemma 20 For any configurationy € T" such that the number of segmentist ~, the number of
segments become— 1 by an execution of a rule.

(Proof) There is no privilege by Rule B since the length of every segments is 1. By this fact and by
lemma 14, every privilege is a privilege by Rule A or Rule A’ or Rule C. The execution of any of these
rules makes a segment of length 2 and the number of segments becerhe O

Lemma 21 Let~, be any segment such thty,) > 1 ands be any segment at. Then, there exists
no computation starting, such that the number of application of Rule B by processedsrinfinite
if the processes consisting ohever change.

(Proof) Lets consists of processdd, P, ..., P, in clock wise order of the ring. Assume that there
exists a computation such that the number of application of Rule B is infinite. Recall that the processes
consisting ofs never change during the computation and no procesapplies Rule A, A, nor C by
assumption.

Let v, be a configuration just after a processsimpplied Rule B after,. Similarly, every time
a process iy applies Rule B, define a configuratiapn. Then we have a sequence of configuration
0,71, 72, ---- FOr €achy;, we associate a integer which is represented by.-bit vector whosej-th
bitis 1 if and only if P; has a privilege by Rule B. The most significant bit (1st bitpp€orresponds
to P; and the least significant bitr(-th bit) of v; corresponds td,,. Thus, 1st bit ofv; is always 0
becauseP; is a head process.
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Then, it is easy to see that the number sequegce,, vo, ... is a decreasing sequence. Because
v; > 0 for all 4, there exists no such number sequence. This is a contradiction. O

Lemma 22 Let v, be any segment such th#ty,) > 1. Assume that there exists a computation
starting from~y, such that the number of segments never change. Then, there exists no segment whose
head process never changes.

(Proof) Assume that there exists such segneiy lemma 21, there exists no computation such that
only Rule B is applied. Thus, Rule A, A’ or C is applied within a finite steps, which implies that there
exists a segmen{ whose member changes infinitely many times during an infinite computation. Let
P be a head process ef Then, P also become a member sf infinitely often because a segment
moves to only one direction on a ring; this is a contradiction. O

Next lemma shows that any schedule whighto keep the number of segments leads to a configu-
ration in which all segments are well formed.

Lemma 23 Let~y, € I" be any configuration such that the number of segmenig,af(vo), is 2
#(70) < m — 1. Assume that there exists an infinite computattoe- o, v1, 72, ... such thatf(vyo)
#(v;) forall j > 0. Then, there exists such that every segment-gtis well formed for alli > 1.

IN

(Proof) LetL = f#(y0) (= () = t(ye) = ...) andsy,se,...,s;, be a sequence of segments in
clockwise order of the ring. Note that processes consisting segments change with the computation
proceeds, but the number of segments is kept by the assumption.

Let! be the label of the tail process of at-y,. Then, by lemma 22, the head processpéxecutes
a rule and become the tail processsefwithin a finite steps and its label is+ 1. Repeating this
discussion, it is easy to see that the configuration reaches a configuration such that the label of the tail
process of; become 0 within a finite steps. Let this configuratiomband P; = Tail(s;).

Consider a configuratiop, such thatP, become the head processsgffor the first time aftery, .
(It is easy to see that such configuration exists by 22.) By the definition of lilesever change its
tag and random signature betwegnand~,. Thus, the right processes 8% in the same signature
inherit P;’s tag and random signature. Therefore, the segmeistwell formed aty..

The random signature of a segment is generated again when the new tail process takes label 0, but
the segment is still well formed. By repeating the same arguments, ..., s, become well formed
within a finite steps. Therefore, every segment become well formed within a finite steps. O

The range of labels and definition of gap is the same as the ones in [BP89]. Lin and Simon showed
the next lemma in [LS92] for the algorithm in [BP89]. Thus, the next lemma also holds for our
algorithm.

Lemma 24 Lety € T be any configuration andy, ..., s; be segments aj and g; be a gap ofs;,
whereL = #(v). Then,> >, ;. g; =L —1modn —1
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(Proof) Proof can be found in [LS92]. O

Lemma 25 Let~y, be any configuration such that< f(-) < n— 1 and every segment is well formed
atvy, andA = 79,71, ... be any infinite computation. Then, there exists a head process of a segment,
say P, and-y, such thatP does not have a privilege by Rule A nor Rule Ayat

(Proof) Assume that every head process has a privilege by Rule A or Ruleyy\fat all j. This
implies thatA; is true at all head process at. Although The label of a head process changes with
the computation proceeds, the relative relation of labels of tail process and head process which are
consecutive processes on a ring is kept (&.¢4 I; — I;_1). In addition, the tag of each segment never
change during the computation. Therefore, a conditjoa 0 vV t; # I, — ;1 V t; < t;_1 is always
true for all head processes of segmentOtherwise,A; become false wheh = 0.

Since all segments are well formeg,= [, — [;_, holds. Therefore, the above condition becomes
t; =0Vt <t;_1. Because; < t;_1 does not hold for all head processes, there eyistsch that
t; > t;_1. Since above condition is tru¢; = 0 holds. Now consider the right segment, where
J =Jj+1 Toty =0Vty < ty_ betruet; = 0 holds sincet;;_; = t; = 0 and tags are
non-negative. Repeating this discussion, we hawe 0 for all ¢, which contradicts the lemma 240

Now, we show that the number of segments decreases with high probability and the expected steps
that the ring converges to a legitimate configuration is finite.

Lemma 26 Let~y, be any initial configuration such th&t< (o) < n — 1. Then, the expected steps
that the number of segments decreases is finite.

(Proof) Assume thal\ = ~g,v1, 72, ... be any infinite computation such that the number of segments
never decrease. By lemma 23, there existach that all segments are well formedyafor any: > I.
We consider configurations aftey.

Since every segments are well formed and the number of segments are kept, there is no process
which has a privilege by Rule B at any configuratign(i > I). By lemma 25, there exists a process
P and a configuration; (J > I) such thatP is a head process of a segmentand does not has
a privilege by Rule A nor Rule A. Since every head process has a privilege by assumptien,
Headé;) has a privilege by Rule C.

At the computation aftet;, every process never change its tag, and relative relation of labels at
head processes never change (€;0% l;_1). Thus,t; = 0V t; £ 1; —l;_1 Vit; < t;_1 (SeeA;)
is always false at Heasl(). Otherwise, it does not have a privilege by Rule Cyat Therefore, at
configurationsy, (k > J), Headé;) has a privilege by Rule A or Rule A when its label is not 0 and
it has a privilege by Rule C otherwise. When Hegdlhas a privilege by Rule C, the label of the left
process of Heady() is notn — 2 nor 0 because, if otherwise, it has a privilege by Rule A or Rule A
(seeA,).

Let s;_; be the left segment of;. Then, Head;) has a privilege by Rule A when the label of
Tail(sj—1) is n — 2. By an application of Rule A by Heasl(), new random signature of;_; is
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generated. Therefore, every time the value of label circulates,has new random signature.

Now consider the right segmesit,; of s;. If Head(s;41) has a chance to have a privilege by Rule
C at configurations aftey;, we can conclude that; generates new random signature every time the
value of label circulates by a similar discussion described above. Otherwisa (i.enever have a
privilege by Rule C)s; also generates new random signature every time the label of jJdad(n — 2
by Rule A.

Let 79,71, ... be a sequence of indexes of configurations such ¢haind s;_; changed random
signatures at least once at some configurations betweenand~.,. Then, it is easy to see that there
exists a constarif’ determined by the algorithm such that, — 7, < T < oo for all .

Since random signature is randomly chosen fi{@ml }, the probabilityr; < r;_; holds at Heady;)
is 3/4. The expected steps that< r;_; become false is at mo$T’/3. If r; < r,_, become false, the
head process ofcannot make a step by Rule C and it is clear that a daemon cannot choose a schedule
that keeps the number of segment. Thus, the number of segment decrease. O

We have the theorem from above lemmas.

Theorem 12 For eachn > 1, there exists a randomized self-stabilizing mutual exclusion system for a
ring of sizen under a c-daemon. O

Note that the algorithm does not work under d-daemon. (Consider a configuration such that a state
of every process i8.0.0 and a schedule such that all processes are executes at every step. Then, the
number of segments never decrease.)

Reduction of the number of states

The proposed algorithm above requigés — 1)(n — 2) = ©(n?) states. By the similar technique
proposed in [BP89], we can reduce the number of states of above algorithm.

The number of possible tag value is reduced in the following algorithm, it rangeg@vey. First,
we define following predicates:

A, = (ll 7&[1‘_1—I—l)/\(li;éo\/tiZO\/ti#f(li—li_l)\/ti Sti—l)
B, = (li:lifl—f'l)/\(ti#ti,l \/T‘Z‘#n‘,l)/\(li#())
Ci = “ANGAELA+FD)ANCG=tim) AN <71imq)

Q; = (li—l ZTL—Z)

The labels range ovdi0, 1, ...,n — 2}, the random signatures range o¥6r1}. The functionf is
a function from{0, 2, 3, ..., n — 2} and defined as follows.

0 ifk=0
(k)= { 1 otherwise

Note thatf (k) = 0 iff &k = 0.
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The algorithm is the following. The difference is that new tag is giverffy — [;_1). The set of
legitimate configurations is the same as the set defined in the previous version.

Rule RA: IF A; A a; THEN
li=lL_1+1
ti = f(li —li—1)
r; := RandomBit()

Rule RA’: IF A; A —a;; THEN

li=lL_1+1
ti = f(li —li—1)
Tii= oy

Rule RB: IF B; THEN
ti = ti,1

T =T

Rule RC: IF C; THEN

i =1l_1+1
ti = f(li —li—1)
Tii= oy

By modifying the algorithm, the we need a new definitionwsll formed A segments; is well
formed iff every process of has a tagf (g;), whereg; is the gap size of;. The condition for random
signature is the same as the original definition.

Lemma 27 The algorithm satisfies the (1) closure property, (2) fairness property, and (3) mutual
exclusion.

(Proof) Because the behavior of the ring is the same as the original algorithm, the same proof for
closure property holds. Thus, the fairness property and mutual exclusion property also holdD

Lemma 28 The algorithm satisfies no deadlock property.

(Proof) The proof is the identical to the proof of lemma 14 exdgpt [; — I;_1 is replaced by
t; = f(lZ — lifl) andti 75 l; — i1 is replaced b)tZ 75 f(lz — lifl). ]

Lemma 29 The algorithm satisfies no livelock property.

(Proof) Lemmas 18, 19, 20, 23 hold by the same proof. Lemma 25 is shown by replaeirig—1; 1
byt = f(l; — l;—1) andt; # I, — ;1 by t; # f(l; — I;_1) in the proof. Note that, = 0 does not
hold at all head processes becatise: 0 impliesi; = I;_; and contradicts the 24. Lemma 26 is also
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shown by replacingi =1l — ;1 by t; = f(lz — lifl) andti 75 i — i1 by t; 75 f(lZ — lifl) in the
proof. O

Now we have the following theorem.

Theorem 13 For eachn > 1, there exists a randomized self-stabilizing mutual exclusion system which
requires4(n — 1) states per process for a ring of sizainder a c-daemon. O

7.3 Concluding Remarks

In this chapter, we proposed several self-stabilizing mutual exclusion algorithms.

In the first section, we proposed a deterministic self-stabilizimgutual exclusion algorithm under
a c-daemon on unidirectional and bidirectional ring networks whose size is prime and showed their
correctness. Itis easy to show that there is no self-stabilizing algorithm whoseisizemposite and
n does not have a factdr. (The proof can be shown by the similar method used in Theorem 2.1 in
[BP89].) In the case that has factork, whether there exists an algorithm or not is an open problem.

In the next section, we investigated self-stabilizing mutual exclusion systems under assumptions
of a c-daemon, a c-dragon and randomization. We showed that the number of states per process
require isO(n) if we assume dragons and randomized behavior of processes under a c-daemon. The
known deterministic algorithm for 1-mutual exclusion systems req@es / In n) but our algorithm
assuming randomized behavior for each process requiresigaly: — 1)).

Carl-Johan Seger proved that any uniform deterministic self-stabilizing 1-mutual exclusion system
under a c-daemon for a ring whose size iequires at least — 1 states [Bur94]. He showed that there
exists a schedule of processes which cause a livelock if we assume the existence of a self-stabilizing
system and the number of states of processes is lessthan This lower bound by Seger is a bound
guaranteeing no livelock. On the other hand, Israeli and Jalfon [1J90] showe@ (loatn) states is
necessary for uniform self-stabilizing system on unidirectional ring. Their lower bound guarantees no
deadlock property. Thus, there is a gap for lower bounds of the number of states between achieving
no livelock and no deadlock. There is a gap between lower bounds and proposed algorithms. The
following problems are left as future tasks.

e Does there exist deterministic self-stabilizing mutual exclusion systems under a c-daemon which
requires a state set whose size is less ®at / Inn)?

e Does there exist deterministic self-stabilizing mutual exclusion systems under a c-dragon which
requires a state set whose size is less than1?






Chapter 8

Conclusion

In this dissertation, we have investigated the distributemiutual exclusion problem by two ap-
proaches: the coterie approach and the self-stabilization approach. We proposed several algorithms
for distributedk-mutual exclusion.

In Part I, we have studied the coterie approach.

In Chapter 2, we have proposed a concept call@bterie as an extension of coterie. To alléw
processes be in their critical sectiohs;oterie has distindt quorums but does not ha¥e-1 quorums.
Processes can enter their critical section without interfering with other processes; on the other hand,
processes interfere if we use another definitioh-abterie proposed in [BC94, MA93].

In Chapter 3, the analysis of availability of coterie has been shown. We have shown a sufficient
condition and a necessary condition such tdt-majority coterie is optimal under an assumption
that a topology of communication links are complete network and every process fails with the same
probability.

In Chapter 4, we have proposed a distribukechutual exclusion algorithm using/&coterie. We
have shown that the message complexity of the proposed algoriti@ iswhere|Q)| is the size of a
quorum.

In Chapter 5, we have shown the goodness of our distribktetitual exclusion algorithm by
comparing with Raymond’s algorithm by computer simulation. The simulation was done using work-
stations which are connected to a local area network. Since each process was executed on different
workstations, algorithms are simulated in real-time; which can be considered as being close to a real
distributed system. The simulation result shows that the proposed algorithm in Chapter 4 is much
better than Raymond'’s algorithmifis large and mutual exclusion request is not frequent.

In Part Il, we have studied the self-stabilization approach. In Chapter 6, we have explained compu-
tational models and given a survey for the research area of self-stabilizing mutual exclusion. We also
discussed a motivation of self-stabilizing approach. Self-stabilizing systems can tolerate any kind of
transient failures. Thus, Self-stabilizing systems are fault-tolerant systems.

In Chapter 7, we have investigated self-stabilzingnutual exclusion on ring networks. First, we
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have investigated two types of self-stabilizikgmutual exclusion problems on unidirectional and
bidirectional rings. We have shown that there exists no type-2 problem (i.e., a configuration of any
arrangement of privileges can be reachable from any configuration) does not exist on unidirectional
rings. We have proposed a type-1 self-stabiliZiagiutual exclusion algorithm on unidirectional rings

and type-2 self-stabilizing-mutual exclusion algorithm on bidirectional rings under c-daemon. These
algorithm require that the number of process of a ring is prime. In the case that the number of process
has a factorf # k, there is a schedule of processes which does not reach a legitimate configuration.
Next, we investigated self-stabilizing 1-mutual exclusion problem as a special casmuatual ex-
clusion. We have proposed a randomized self-stabilizing 1-mutual exclusion algorithm for any size
of unidirectional ring under c-daemon. In the algorithm, randomization is used because there is no
algorithm if the number of process is composite.

The coterie approach is an approach that reduces the number of messages for distributed mutual
exclusion and increases the availability. The algorithm proposed in Chapter 4, does not consider any
failures such as message omissions, process failures, etc. The design of an algorithm which tolerates
such failures is the next step of the work.

In [Bal94b, Bal94a], Baldoni proposéddcoterie, which is completely different from ours. The basic
idea of his distribute@-mutual exclusion algorithm is that each processijpsrmissions (or, tokens);

a process wishing to enter a critical section must collect tokens from each process in a quorum. To
make this scheme work, the requirements for a quorur@ &eas follows:

¢ Intersection Property: For any, ..., qx+1 € C, m’?ﬂlqi £ (.

1=

¢ Minimality Property: For anyj;, ¢; € C such thay; # q;, ¢; € g;.

By our definition ofk-coterie, each process has one token. On the other hand, each prockss has
tokens by Baldoni's:-coterie. We believe that there is a unified scheme for these ideas. For example,
there may be a condition for a quorum set to achiveutual exclusion when each process Bas
tokens. The investigatin of unifidetcoterie scheme is left as a future task.

The self-stabilization approach is a strong approach for transient failures. The design of coterie
based mutual exclusion algorithms which tolerates transient failures by using a concept of self-
stabilization is a interesting theme. However, designing a self-stabilizing algorithm and proving the
correctness are difficult tasks. The automatic construction of self-stabilizing algorithm is an important
for realizing self-stabilizing systems.

In this dissertation, we have treated the coterie approach and the self-stabilizing approach separately.
A unification of these two approaches is an another task.



Appendix A

Local Coteries and a Distributed
Resource Allocation Algorithm

The distributedk-mutual exclusion problem treats a situation such that every process in a distributed
system share all resources uniformly. But it is natural to consider that a set of resources available to a
process is different by processes. This may happen by limitations of access rights or some geometrical
reasons.

Consider a situation such that a procéjshas access rights to resouregsry, r3 and a process
P, has access rights to resouregsr, and each process issues a resource request when it requires
resources. In such case, thenutual exclusion is not suitable to arbitrate the conflicts of resource re-
quests. In addition, if two processfs, P, do not share any resources then it is desirable that resource
allocation is done without interference. The mutual exclusion andthmitual exclusion problems
are special cases of the resource allocation problem. Such problem is proposed and investigated as
“the drinking philosophers problem” by Chandy and Misra [CM84]. In their paper, they showed a
token-based resource allocation algorithm for a special case in such a way that each resource is shared
by only two processes. The objective of this appendix is to solve the problem under the frame work of
coterie and its variants. Generalized resource sharing model is also appear in the paper by Miyamoto
[Miy94], in which an allocation problem ainonymousesources which are shared by any number of
processes is investigated. He used coterie approach to solve the problem.

In this appendix, we consider a problem of allocatimgmedresources; a process requests any
amount resources and any of free resources are allocated but a process must know the names of al-
located resources to use them. We propose a hew concéptadfcoterieand a resource allocation
algorithm using a local coterie.

A.1 The Resource Model

A distributed system consists afprocesse®” = { Py, P», ..., P, }, bidirectional communication links
each connecting two processes, antesource? = {ry,r2, ..., 7, } shared by processes. Processes
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P € U are allowed to use some of the resources R. We denote this relation by functian: U —
2%, Foranyu € U,
a(P) = {r € R| P has an access rightig < 2%.

WhenV is a set of processes, with abuse of notatiofl;) denotes)pcy a(P). The triple U, R, «)
is called theshare structuref the system.

We define a configuration of the distributed system as a tuple of the states of all processes and
communication links. Then a computatianof the system can be described by a (possibly infinite)
sequence of configurations starting from the initial configuration. Note that the computation is not
determined uniquely in general, even if the initial configuration (including input) is given because of
the asynchrony of system.

When the system is at configurationprocesse$® may be accessing some resources-or any
P € U, pp(c) denotes the set of resourcesvhich are being accessed Bywhen the system is at
configurationc.

A.2 The Resource Allocation Problem

Consider a distributed system in which each process repeats the local computation and the resource
access phases forever. The former phase does not include resource access instructions, and the latter is
a series of resource access instructions which starts with a resource request instruction for requesting
some resources and ends up with a resource release instruction for releasing all resources it is access-
ing. LetS = (U, R, «) be its share structure. Each time the resource access phase is executed, the
number of resources a proceBsequests can change between 1 ardP)|.

Theresource allocation probleris the problem of implementing the resource requests and release
instructions in such a way that whenever a procBsequestst (< |«(P)|) resources, eventually
k resources are allocated f&. Furthermore, as the restriction arising from the share structure, any
computationt = ¢g, ¢y, ..., ¢;, ... Of the resulting distributed system must satisfy the following two
conditions:

Allocation Validity: For any configuratior; and any set C U of processes,

U rrele:) Cav).

pPecV
Mutual Exclusion: For any configuratior; and any two different processé&sP’ € U,
pp(ci) N ppr(ci) = 0.

Allocation Validity guarantees that a proceBsonly accesses resources to which it has an access
right, and Mutual Exclusion guarantees that every resource is allocated to at most one process at a
time.
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A.3 Local Coteries

In general, the resource allocation problem treats cases in which resources are shared by different sets
of processes unlike the mutual exclusion problem. Consider a case in which two praBemsg:f”’
do not share any resource. Then it is a natural requirement that their requests be interference free. (It
may or may not be possible, depending on the remaining part of a share structure.) As long as the
same quorum set is associatedt@nd P/, the interference inevitably occurs.

In order to take into account the share structboe each proces#, we associate (possibly different)
quorum set€) p C 2V reflecting the share structure. We call the §8t- | P € U} alocal coterie
with respect to a share structyi®, R, «). The formal definition of the local coterie is as follows.

Definition 8 A non-empty sefQp | P € U} is alocal coteriewith respect to a share structure
(U, R, ) if and only if the following conditions are satisfied.

e Non-emptiness:VP € U[Qp # 0.
e Intersection Property: VP, P’ € Ula(P) Na(P') #0 = Vq € Qp,Yq € Qp/[qgNq # 0]].

e Minimality: VP € U,VYq,¢' € Qplg Z ¢]. -

Note that the definition of local coterie includes that of coterie as a special casd ®henl and
a(P)=Rforall PeU.

First, we show a simple construction algorithm for a local coterie with respect to a share structure
(U,R, ).

Algorithm LocalCoteri€U, R, «);
begin
gp:={P}forall P eU;
forall »in Rdo
for each P, P’ in U such that P # P’ do
if r € a(P) N a(P’') then
qp =qp U{P'};
qp = qp U{P}
fi
od
od;
Qp ={qp}forall P €U,
return {Qp | P e U}
end.
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Theorem 14 The algorithm LocalCoterié(, R, o) correctly computes a local coterie with respects to
a share structurdU, R, ), in time O(|R||U|?).

(Proof) The non-emptiness and the minimality trivially holds since a quoru@ sefontains only one
qguorum for each procedd € U. Assume that the intersection property does not hold. e, be
processes such th&t # P> and(a(P1) Na(P2) # 0) A (gp, Ngp, = 0), Wheregp, € Qp, for
1 =1,2. Sincer € a(P1) Na(Ps) forsomer € R, P» € Qp, andP; € Qp, by the definition of the
algorithm. This implieg P1, P} C gp, N gp, because’; € Q p, for eachP; € U; a contradiction.

It is easy to see the execution time of the algorithi®@{$R||U |?). O

Corollary 3 For any share structuréU, R, «), there exists a local coteri€ with respects to share
structure(U, R, «). O

A.4 A Distributed Resource Allocation Algorithm

Now, we are ready to introduce our algorithm. We first explain an outline of the algorithm, and then
describe it in detail.

The processes altogether maintain a distributed database which keeps pairs of a process and a re-
source it is currently accessing. A procddswishing to acces# resources sends a query asking
whether or not there ark resources available to.> If the answer is yes, then theresources are
allocated taP,,. Hence, the algorithm is assertion-based, as well as quorum-based.

Let{Q.} be alocal coterie, whei@,, is the quorum set associated with procEssThen an outline
of the algorithm is as follows.

In our algorithm, a procesB, is (partially) responsible for the resources which are accessible from
a procesd’, such thatP, appears as an element of a quorgiin @,,. Let R, be the set of resources
for which P, is responsible. For each resourcee R,, P, remembers the process which currently
accesses (or the fact it is free, otherwise). A proce#y wishing to acces resources selects an
arbitrary quorumy € @,,, and sends a query messg@RERY) to every proces®, in q. A process
P, receiving query(QUERY) sends back the names of resources available,toUpon receiving the
list of available resource names from every procBss ¢, P, selects arbitrarilyi resource names
which appear in every list and sends a lock messh@€K) with the k names to every proces3 to
let it update the current states of theesources. WheR,, releases thé resources, it sends an unlock
messageUNLOCK) with the k names to every proces3, to let it change the states of the resources
into free.

The above explanation is just an outline of the algorithm and it does not contain explanations how to
avoid deadlocks and starvations and how to treat cases in Whidannot findk resources available
to P,. Moreover, in order for the algorithm work correctly, the query step must be carried out in the

1we say that a resoureeis availableto P, if » € a(P,) andr is currently free. On the other hand, that is accessible
tor simply means € a(P,).
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mutually exclusive way. Nevertheless, we would like you to observe thiat decides to access a set
of resources:, thenr is currently available td?,, i.e., P, has access right toandr is not used by
some process, by definition of local coterie.

The algorithm assumes that each procBssmaintains the following local variables. For conve-
nience of explanation, as in the above rough explanation, define

Sy ={Py | P, € gforsomeqg € Q,,}

and

PLUESH
e C, —the current logical time a®, . Initially, it is 0, and is automatically incrementéd.

e D, —the array to hold for each resources R,, if r is LOCKed or not. More precisely, for
eachr € R, D,(r) = (P,,t) if r is locked by(LOCK) message with timestantpssued by
P,. Otherwise, ifr was lastly released b§NLOCK) message with timestampthenD,,(r) =
(L,t). Initially, D,, = (L,0) forallr € R,,.

e W, — it holds the name of process to whi¢ly sends the current states of resources held in
D, and is waiting for a reply. In other wordgV,, is the process from whick, is waiting for
(LOCK) message, after sendifBESPONSE) message. IP, is not in this situation|V,, = L.

e T, —itholds the timestamp attached to fii@JERY) message that the process heldflip issued.
T,=LifW, = 1.

e X, —the priority queue to holdQUERY) messages waiting &, for their turns. They are sorted
in the order of their timestamps.

We describe our algorithrAllocResourcén an event driven form.

Algorithm AllocResource
Let {Q.} be the local coterie used in the algorithm.

1. When a processP, wishes to access (< |a(u)|) resources:

ProcessP, arbitrarily selects a quorum € @Q,,, and sendsQUERY, P,, C,,) to every process
in ¢.2 Recall thatC, is the current logical time aP, and is attached to the message as the
timestamp. Then it waits until both of the following two conditions hold:

2By using a standard technique that uses unique process identifiers, events occurred in the system are totally ordered by

means of the logical time[Lam78].
3The numbei of requesting resources is not a parameteiQIERY).



98APPENDIX A. LOCAL COTERIES AND A DISTRIBUTED RESOURCE ALLOCATION ALGORITHM

e It has received RESPONSE, P,, D,) messages at least once from each proégss gq.
Note thatP, sends(RESPONSE, P,, D,) message carrying the latest versioniof as
soon asD,, is updated, even if it has sent an older versioPfo(see Case 7). Note also
that P, does not need to store old versions. It simply discards them and holds the latest
one (see Case 3).

e Recall that everyD, contains the states of all resourcesif,) from the view of P,,.
Let A, C «(P,) be the set of resourcessatisfyingD,- (r) = (L,t*), wheret* is the
maximum value occurred in the second (i.e., time) fieldgfr) among allP, € ¢, and
P,« is the process achieving. Intuitively, A, is the set of resources currently available to
P,, as we will show in the next section. The second condition is thatontains at least
k resources.

If both of the above conditions hol@,, then arbitrarily selects a séf, of k£ resources fromd,,,
sendsLOCK, P, Cy,, S,) message to every proceBs € ¢, and accesses, .

2. When processP, releases the sef,, of accessing resources:

Process?, sendslUNLOCK, P, C,,, S,,) message to every proceBs € q.

3. When processP, receives(RESPONSE, P, D,) message from a processg:

ProcessP, storesD,,. If it has received an older version 6f,, then it discards it and stores the
latest one. Because the message order is assumed to be unchangeable in each communication
link, P, always holds the latest version among versions received so far.

4. When a processP, receives(QUERY, P, t) from processP,:

If W, = L, i.e., if process, does not wait fofLOCK) message from another process, it sends
(RESPONSE, P,, D,) message td’,, and setdV, := P, andT, := t¢. Recall thatt is the
logical time atP,, at which the(QUERY) message was issued (see Case 1).

Otherwise,W, = P, for some proces®, € U, i.e., P, waits for the two conditions in
Case 1 to hold. I}, < t, i.e., if P, has higher priority (sincd’, is the timestamp attached
to P,’s (QUERY)), P, stores(QUERY, P,,t) to queueX,. Otherwise, ifT,, > t, P, has the
priority. Then in order to preempt the right to lock resources whigtgave toP,,, P, sends
(PREEMPT, P,) to P,,, and waits forP,, replying either(RETURN) or (LOCK)message (see
Cases 1 and 8), after storing tf@UERY) messages issued B, andP,, to X,,. WhenP, again
needs to sendPREEMPT) to P,, while waiting for a reply fromP,,, v ignores it.

5. When processP, receives(RETURN, P,,) message from proces®,,:

ProcessP, takes the(QUERY, P,,t) message from the top of quedg,. It is the (QUERY)
message which has the highest priority. THénsends(RESPONSE, P,, D,,) to P,, and sets
W, = P, andT, :=t.
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6. When processP, receives(LOCK, P,, t, S,,) message from procesg,:

ProcessP, updates its datd,; it setsD, (r) := (Py,t), for eachr € S,,. Then it continues
(the algorithm fragment for) Case 5.Xf, is not empty.

7. When processP, receives{UNLOCK, P,,, ¢, S,,) message from proces®,,:

ProcessP, updates its datd,; it setsD, (r) := (L, t), for eachr € S,,. If W,, # L, then it
sends(RESPONSE, P, D,,) message tdV,,. Otherwise, it continues Case 5Xf, is not empty.

8. When processP,, receives(PREEMPT, P,) message from proces®,:

If it has sent backLOCK) message td@>,, then it simply ignores théPREEMPT) message.
Otherwise, proces®,, sends backRETURN, P,,) message, and theR, discardsD, which
was sent fromP,. That is, the responsgRESPONSE, P,, D, is canceled by théPREEMPT)
message. 0

Although in the above description #flocResource(RESPONSE) carries all dataD,,, it is clearly
reducible. At a process, sdy,, only the data on the resourcesifiP,) in D,, will be used.

A.5 Correctness Proof

In this section, we show the correctness of our algoritifacResourceprovided that processes ac-
cessing resources release them within a finite time.

Theorem 15 Algorithm AllocResource guarantees Allocation Validity condition.

(Proof) This theorem holds since each procfssselects the resources from the candidategt
which is a subset ok (P,). O

In order to proceed the remaining properties, recall that a praggesgshing for k resources arbi-
trarily selectsk resources fromd,, determined fromD,’s for P, € ¢ € Q.,, sendsLOCK) message
carrying the names of resources to every,, and accesses them. On the other hand, praBgss
updatesD,, responding to théLOCK) message. If two processes which share resources redejyed
simultaneously, they could select the same resources and access them simultaneously. Our algorithm
guarantees that such situations never occur. We introduce the notinegfionto prove it formally.

A processP, requestingk resources send¥QUERY) message to every membg&y, of a quorum
g € Qu, and collectsD,’s until the two conditions of Case 1 hold. If{®REEMPT) message from
P, € q arrives in the meanwhile, it discard®, and waits for newD,,. Recall that receiving &,
from everyP, € ¢ is a necessary condition, but is not sufficient. We saytas in theQ-regionif P,
has received &, from everyP, € ¢, but has neither seft OCK) message nor receiveé®REEMPT)
message since then.
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Lemma 30 Let P, and P, be any two processes such thgtP, ) N «(P,) # (. ThenP, and P, are
never in their Q-regions simultaneously.

(Proof) Assume that there exists two procesBgsP, such thai(P,) N«a(P,) # 0 andP,, P, arein
their Q-regions at a time. Ld?,, be a process such th&}, is in both quorumg?, andP, chose. Note
that there exists such,, sincea(P,) N a(P,) # 0. Without loss of generality, assume tha sent
(RESPONSE) to P, first. By the definition of algorithmp,, extracts the request frof, after sending
(RESPONSE) to P,. By assumptionP,, sent{RESPONSE) to P, before(LOCK) or (RETURN) is sent
from P,. This action contradicts the definition of the algorithm. O

Suppose that a resourgénas been allocated. I, didn’t knew this fact,A,, could includer when
a process’, sentD, for the first time toP,, which implies that- may be allocated to more than one
process since the candidate gkt is determined fromD,’s. The next lemma guarantees that such
situations never occur.

Lemma 31 Let P, and P, be any two processes such that «(P,) N«a(P,) # 0. Assume that has
been allocated t@,, and P, is now in its Q-region. Further, assume thdt used quorung,, € Q,, for
its resource request ang, is using quorumy, € @,. By the definition of local coterie,, N g, # 0.
Then for anyP,, € g, N ¢y, Dy (1) = (Py, t) for somet.

(Proof) SinceP, is accessing a resoureeit had sen{LOCK) message to every processginwhen it
exits from Q-region and then it started accessingvery P, € ¢, Ng, sends dRESPONSE) message
to P, after it receives dLOCK) message fronP,. WhenP,, receivesLOCK) from P,, it updates its
local database such thatis allocated toP, with its allocation time. WherP,, sends(RESPONSE)
message t@,, P, knows that- is already allocated. Thu®,,(r) = (P,, t) for somet. O

Theorem 16 Algorithm AllocResource guarantees Mutual Exclusion condition.

(Proof) Assume that a resoureec «(P,) N a(F,) is allocated to bothP, and P, simultaneously.

The proof is by induction. Mutual Exclusion condition holds at the initial state of the system since

no resources are allocated to processes. By lemma 30, any two processes sharing resources are not
in their Q-regions simultaneously. Without loss of generality, we assuméthiaves its Q-region

first by sending(LOCK) message to allocateto P,. Then, P, can enter its Q-region only after all
processes ig, N g, receiving(LOCK) message fron®,, whereg, € Q. (¢, € Q,) is the quorum that

P, (P,) chooses for response request. Sif;eand P, share resources, N g, is hot empty. LetP,

be any process ig, N g,. Then,P,, updates its database so tliat (r) = (P,, t,,) holds for some,,

by receiving(LOCK) message fronP,. By lemma 31, everyRESPONSE) message sent tB,, from

P, contains dataD,, (r) = (P,,t,). ThereforeP, cannot choose; a contradiction. O

Theorem 17 Algorithm AllocResource is deadlock free.



A.6. CONCLUDING REMARKS 101

(Proof) Since processes request all resources necessary when the resource access phase starts, we do
not consider deadlocks caused by nested requests. We consider the deadlocks at the query step.
Assume that a deadlock happens. Since the number of processes is finite, there exists a time such
that the number of processes being deadlocked does not increase afterwards. We consider what will
happen. Although there may exist processes which do not send and/or receive messages in general,
without loss of generality, we can assume that there are no such processes.
Let V' C U be the set of processes being deadlock, and assumeg,thatV’ is the process whose
timestamp attached to th€UERY) message is the smallest (i.e., highest priority) ambhgThe
(QUERY) message by, will arrive to every process in a quorugne @, in a finite time. Since the
logical clock monotonically increases, the timestampgs (QUERY) will become the highest among
all processes. By the definition of the algorithm, each proégss ¢ behaves as follows. P, sent
(RESPONSE) message to a proceBs, € U but it has not received the correspond{b@CK) message,
then P, sends(PREEMPT) message t@,, to switch the query right td,. If P, receives(RETURN)
message fronP,, it will send (RESPONSE) message td@,. Otherwise, it will send RESPONSE)
message td,, when P, returns(LOCK), sinceP,’s (QUERY) has the highest priority. On the other
hand, processes that share resources Rjtloes cannot be in their Q-region, and hence, resources are
not allocated to them. Therefore, within a finite time, enough number of resoureé®in become
free and the request by, will be satisfied within a finite time, a contradiction. ]

Next theorem can be proved by a similar argument.

Theorem 18 Algorithm AllocResource is starvation free. O

Now, we can conclude that the algorittislocResourcecorrectly solves the resource allocation
problem.

Theorem 19 Algorithm AllocResource solves the resource allocation problem. O

A.6 Concluding Remarks

In this appendix, we have discussed the resource allocation problem, and proposed a distributed al-
gorithm. Unlike other conflict resolution problems such as the mutual exclusion ardrthdual
exclusion problems, we consider cases in which processes may have access rights to different sets of
resources. In order to take into account the resource share relation of the system, we have introduced
a new concept called local coterie.

The number of messages necessary to exchange per resource request can be shbjin whieee
q € @, inthe best case and@ + |a(P,)|)|q|. whereg € @, in the worst case. In cases such that
each resource is shared by small number of processes, since the quoryg, sizec @, can be
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small, our algorithm is suitable. The algorithm by Baldoni [Bal94b] requidés™/(M+1)) message
per resource allocation, whereis the number of processes anflis the number of resources. M
is large, the message complexity of Baldoni's algorithm become approximately, which is less
efficient than ours.

Finally, we would like to touch some future works. As a general advantage of quorum-based ap-
proach, our algorithm is robust against process and/or link failures; as far as at least one quorum
“survives”, there is a possibility that resource allocation can be achieved. However, discussing the
fault-tolerance aspect of this algorithm in detail is left as a future work. The local coterie construction
algorithm proposed in this appendix is simple. However, the local coteries produced are not always
good ones. Constructing better local coteries is also left as a future task.



Appendix B

Implementations of Distributed
k-Mutual Exclusion Algorithms

The examples of implementation of two distributkanutual exclusion algorithms is shown in this
appendix. We show the implementation of our algorithm proposed in Chapter 4 and the algorithm
proposed by Raymond [Ray89a].

Each program fragment of the implementation of distributedutual exclusion algorithm shown
below is a part of the source code which is used in the simulation in Chapter 5 and listed without any
modifications.

The template of the implementation of algorithms is as follows:

Algorithm();
{
| Initialization of Variables, etd,
while (TRUEX
SiteBehavior(); /* decides the behavior of the process */

| Do active behavior decided by SiteBehaviof().

if (no messages arrived
continue;

‘ Receive a messaﬁ;e

‘ Do passive behavior dependent on the received mes{sage.

103
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The procedur&i t eBehavi or () is a procedure to decide a behavior of a process. For instance, a
process is ilNormal state, it decides to request a mutual exclusion with specified probability. Accord-
ing to such decision, process do its active behavior. If a mutual exclusion request happen, the process
sends request messages, for instance. After finishing active behavior, the process checks message ar-
rival. If a message is arrived, it read the message and process the message according to its message
type. This is the passive behavior.

B.1 Our Distributed k-Mutual Exclusion Algorithm using k-

Coterie
voi d
KakutgawaPrEcess( k, p, quantum cycle, tcs)
in
doubl e p;
int quant um
i nt cycle;
int tcs;
_Si%eID Y&/ é; Vi t Y, Vit S
in , Sz, itin itin ;
Si t eSet %Or um Next Si tges 9=y o
bool itingCkWai t, NoNbreQJor um Wi tingTEnmpty,
Wai ti ngAnswer, WitingExit;
Message Msg
char bod{[ 80
static bool LeX| coless

static bool SelectAQu orun() Get ConsensusP() ;
extern void SiteBehavior();

Transit Normal State();

Wai ti ngskWait = fal se;
No!\/bre@orum = fal se;
Wai ti ngTEnpty = fal se;

Wi ti ngAnswer = fal se;

Wai ti ngExi t = fal se;
Set Si t eSet Enp oru

Set Si t eSet E E%xt Sr? es);
for ()4

* k%

:::/ DECI SI ON OF BEHAVI OR CF SITE
Si t eBehavi or (k, p, quantum cycle, tcs);

i f (ExitMitexJob)
return;

if gEnt er CSRequest Happen) {
** MJUTEX REQUEST HAPPEN

**/

Tr ansi t Request i ngSt at e(?

Ent er CSRequest Happen = fal se;
Requestl ngCs = true.

MaxSeq = xSeq +

Seq = MaxSeq;

Sel ectAQ.Jorun(QJorum Coterie, SetK, SetT);
L1:

SiteSetDifference(NextSites, Quorum SetK);

SendRequest ToSet (Next Sites) ;

Wai ti ngOkVWait = true;
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}

if (Reguestl ngCsS
NolvbreQJor um or (WaitingtkWait and SiteSet Enpt yP(NextSites)))){
V\altln?(lw\alt fal se
i f OonsensusP( SetK, Coterie)){

**/ ENTER THE CS

TransitInCritical SectionState();
Requestl ngCS = fal se;
ExecCS = true,
NoMor eQuorum = f al se;
} /eL§e i f (not NoMoreQuorum {

**/FAI LED TO GET A QUORUM ... RETRY!

if (Sel E(itAQJorun(QJorum Coterie, SetK, SetT)){
oto

} gl se {

) NoMor eQuorum = true;

y }

i f/gzxi t CSRequest Happen) {
**/ REQUEST OF EXI TI NG THE CRI TI CAL SECTI ON HAPPEN

Exi t CSRequest Happen fal se;
ExecCS = fal s
TransitExiti n%Crl ti cal Sect ionState();
SendRel easeTo Set K
Set Si t eSet Enpt y( Set K)

) Wai ti ngTEnpty = true;

if/gy\aiti ngTEnpty and SiteSet EnptyP(SetT)){
**/EXIT THE CS

Wi ti ngTEnp ?/ al se;
Tran5|tNorrra Sta e();

if (not Pendi ngMessage())
conti nue;

Msg = Recei veMessage() ;

Y = Sender | D( MsQ) ;

sscanf(Get NbssageStrlng(Msg) MESSAGE_TYPE_FORMAT, nsgbody, &Sy);
MaxSeq = max(MaxSeq, Sy);

/***

:::/ MUTUAL EXCLUSI ON REQUESTI NG PROCESS
i f/g*St r Equal (nsgbody, OK_MESSAGE)) {
**/O< MESSAGE (procedure Recei pt OK)

if (WaitingOkWai N?e
Si't eSet Renove(NextSites, Y);

|}f Reguestln
SiteSe

t Add _\I{)
) SI t eSet Rermve( Set Y);
el se
SendRel ease(Y);
Si t eSet Renove( Set T, Y);

}
Di sposeMessage( MsQ) ;
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conti nue;

i f/£*8t r Equal (nsgbody, WAI T_MESSAGE) ) {
:*/V\AI T MESSAGE (procedure Recei pt WAI T)

if (Vaitingkwait){
Si't eSet Renove(NextSites, Y);

i teSet Add(SetT, VY);

PoseMessage( MsQ) ;
con i nue;

i f/g*St r Equal (nsgbody, QUERY_MESSAGE)) {
*x QJERY VESSAGE ( Procedure Recei pt Query)

|f (ExecCS && Sit eSet Menber P(SetK, Y)){
SendAnswer No
} else {
i f (SlteSetl\/EnberP( SetK, Y)){
SendAnswer Rel ease(Y)
S| t eSet Renmove(SetK, ) ;
) SIteSetAdd(SetT Yy
el se
/* already rel eased before query arrives */
) ; I* ignore it */

}

{)oseMassage( VBQ) ;
con i nue;

* k%

:::/TO(EN MANECGER PROCESS
i f/g*St r Equal (nsgbody, REQUEST_MESSACE) ) {
** REQUEST MESSAGE (procedure Recei pt Request)
i f éHaveToken)
dck

) HlaveTo en = ial se;
el se
i f (LSXI coless(Lat est TokenHol der SeqNo, Lat est TokenHol derSitel D, Sy, Y)){

EnPQJeue PQueue, Y, Sy);

J efse t Vi tingAn ){

i no itin swer
W&ltln = g
Vi ti ngSy = Sy
SendQuer y( Lat est TokenHoI derSitelD);

) V\ialtl?gAnswer = true;
el se
if Lexi coLess Waitin Wi tingy,

s(endV\aut ( gSy, gY, Sy, ){

EnPQJeueE PQueue, Y, Sy);

SRR o v ey
n eue eue itin itin

V\ﬂltlnY% g 9=y
}V\altlngS Sy,

) %* See Recei pt ANSVER *** for followi ng actions */
}
Di sposeMessage( MsQ) ;
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conti nue;

i1 (StrEqual (msgbody, RELEASE MESSAGE)){
::/ RELEASE MESSAGE (procedure Recei pt RELEASE)

i f (WaitingAnswer){
got o Get PseudoAnsRel ;

i f (PQueueEnpt yP(PQueue
Hgvgll'okenng r&e;QJ I

Sz = PQueueHeadPriority

Di scar dPQueueHead( PQueue) ;
SendCK( Z, Sz%;
HaveToken = fal se;

}

Di sposeMessage( MsQ) ;
conti nue;

} else fb
Z = eueHeadIt_en(_PQJeu(aJ;
§;, (53 eue);

}
i1 ($trEqual (msgbody, ANSWER RELEASE MESSAGE)){
©* ANSVER RELEASE MESSAGE (Token Manager Process)

/
i f £V\aitingAnSV\er%{ )
/* continued action of Recei E&)REQJE.ST */
EnPQueue( Pg.leue, Lat est TokenHol der Si t el D, Lat est TokenHol der SeqNo) ;
Get PseudoAnsRel :
Wi ti ngAnswer = fal se;
SendO(?W.u tingY, WaitingSy);

el se
Senngt al Error (" ANSWER_RELEASE arrived when !WitingAnswer");

Di sposeMessage( MsQ) ;
conti nue;

}
i f/g*St r Equal (nsgbody, ANSVER_NO MESSAGE) ) {
::/ANSV\ER_NO MESSAGE ( Token Manager Process)
i f (WaitingAnswer
V\Sii ti n?A%SV\Ef =)§al se; .
/* confinued action of Recei pt REQUEST */
SendV\aMEV\altlng%. ) o
EnPQueue( PQueue, itingY, WaitingSy);

el se
) Senngt al Error ("ANSWER_NO arrived when !WaitingAnswer");

}

Di sposeMessage( MsQ) ;
conti nue;

}

/* ignore bogus nsg */
Di sposel\/bssage(l\/tsg?;

* k%

:::/GetConsensusP() - Check if all sites in a quorumsend OK or not.
static bool ]
Get ConsensusP(Set K, Coterie)
SiteSet SetK; .
kcoterie Coterie;
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int g, gs, n, i;
i nt f;
Si teSet quorum

n = GetTotal Sites();
qs = HowManyQuor uns( Cot eri e) ;

for (qt 0; g < gs; g++){
u

= true;
Nth oru uorum Coterie, ;
forQ(Jl —an < n; i++){ q)-
i f g i SethnberP(quoru i)
( teSetMenberP(SetK 1)){
al se;
r

te
I'Si
= f
eak;

Si
f
) b
}}

Ifr(enjrn(true);

return(fal se);

}

static bool

Lexi coLess(s1, x1, s2,x2)
int sl, s2;
SitelD x1, x2;

return((sl < s2)
r ((s1 == s2) and (x1 < x2)));

B.2 Raymond’s Distributed k-Mutaul Exclusion Algorithm

voi d
Rayn{)ndPrOEess(k, p, quantum cycle, tcs)
in ;
doubl e p;
int quant um
i nt cycle;
int tcs;
Sitel D Z:
Message NVsQ;
Sitel Y;
int ;
int
char rrsgbod{[ 80] ;
int Lexi coLess(), Not _In_CS();
voi d SendRequest Message(), SendRepl yMessage();

extern void SiteBehavior();

Transi t Normal State();
for (;;){

* k%

:::/ DECI SI ON OF BEHAVI OR OF SITE
Si t eBehavi or (k, p, quantum cycle, tcs);

i f (ExitMitexJob)
return;

i f (EnterCSRequest Happen) {
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* %

::/ MUTEX REQUEST HAPPEN

Tr ansi t Request i ngSt at e(?

Ent er CSRequest Ha[)pen = fal se;

Request i ng rue;
Qur_Seq = Max_Seq + 1;
forf((zz-ll Z <= 'N, Z++){
i =
SendRe uest f\/tessa e(Z Qur _Seq %
Reply Count[Z] = Reply Count[z] + 1;
}
}

i flﬁl*zi(i t CSRequest Happen) {
*** EXIT THE CRI Tl CAL SECTI ON

EXI tCSRequest Happen = fal se;
Executing_CS = fal se
Transi t EXiti ngCrl tical SectionStat e();
for (Z =1; Z°<= N, Z+)
i f (Defer_Count[Z] )#
SendRepTyMessage(Z Deter_Count[Z]);
Def er _Count [ Z]

) }rransitNormaI State();

if (!Pendi nglVEssage())
conti nue
Mg = Recel veMassage()
Y = Sender | D(MsQ) ;
sscanf ( Get I\/bssageSt ring(Msg), MESSAGE_TYPE_FORMAT, nsgbody);

i f/g*St r Equal (nsgbody, REQUEST_MESSAGE) ) {
** REQUEST MESSAGE

sscanf(Get MessageStri nggl\/sg), REQUEST_FORMAT, nsgbody, &Sy);

Max_Seq = max(Max_Seq,
i f UExecuting_CS
or (Requesti ng CS and Lexi coLessSOJr_Seq, me, Sy,Y))){
Dlefer{_Count[Y] Defer_Count[Y] +
el se
SendRepl yMessage(Y, 1);

stseMassage( VBQ) ;
conti nue;

if gStrEquaI (msgbody, REPLY_MESSAGE)) {
** REPLY MESSAGE

sscanf Get MassageStrlng Msg%[ REPL&FO?NAT, nsgbody, &Sy, &Count);
unt ;

i
g ?n _CS() >= N - k)){
** ENTER THE CS
Req{Jestl ng_CS = fal se;

Executing_CS = tr
TransitInCriti cal Sect ionState();

B s oseMessage( MsQ) ;
con i nue;
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/* ignore bogus
Di sposeMessage( l\/tsg§J

= N, Z++)
y Count[Z] == 0))

return(Cnt);

B.3 The Behavior of a Process

The program fragment of a process behavior used in Chapter 5 is shown below. Functions whose name
end byHook are functions for collecting statistic data. For instance, a fundfoiner CSHook( )

is called when a process enters a critical section and the number of times a process enters a critical
section is counted by this function.

fl oat Pr oceedCSAt = 0.0;
float “Transi t Nor mal At = 0.0;
fl oat —Mut exRequest Hap;l)_enedAt = 0.0;
static int I nNormal StateTi neCounter = O;
St at Machi neSt ate = STATE I NI Tl AL;
bool Ent er CSRequest Happen = fal se;
bool Exi t CSRequest Happen = “fal se;

bool Exi t Mut exJob = fal se;

extern void
Ent er KMut exPr ocessHook( ),
Exi t KMut exPr ocessHook( ),
Sendl—look(?_|o
CSRequest ok()
Ent er CSHook
Exi t CSHoo k()
Fi ni shMut exJobHook()

voi d
Si tetBehaw or(k p, quantum cycle, tcs)
in
doubl e P
int quant um
int cycle;
int tcs;
float cval ;

cval = Currentd ock();

if (cval >= (float)cycle
E§<|t|\/UtexJ(()b = ZUZ )
return;

-—n—r
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}

switch &Michl neSt at e){
case STAT NI TI A

case STATE_ IVAL

if (cval ™ >= _TransitNormal At + (float) InNormal StateTi mneCounter){
I nNor mal Stat eTi mreCounter += 1;
if (Randon() < (float) p){
Ent er CSRequest Happen ="1r ue;
bt
case STATE REQUESTI NG

b /*kdo not hing */
rea
case STATE_IN_CRI Tl CAL_SECTI ON;
if (cval >="(_ProceedCSAt + (float)tcs)){
Exi t CSRequest Happen = true;

reak;
case STATE EXI Tl NG CRI TI CAL_SECTI ON:
[* do nothing */™
break
def aul t

fprlt(ntf s§ derr, "Cannot happen in SiteBehabiour()\n");
exi -

}
void
il’ran5| t Nor mal St at e()
State ol dst at e;
Tr ansi t Nor mal At Current C ock();

TnNor mal St at eTi rreCount = 0;
ol dstate = Machi neSt ate

if (g‘g/achl neState | = STATE EXI TI NG CRI Tl CAL_SECTI ON)
(Machi neState !'= STATE_I NI TTAL)){
p t Sst derr, "bogus state transition to NORVAL state\n");
exi
}
Machi neSt ate = STATE_NORMAL;
if (oldstate == STATE_EXI TI NG CRI TI CAL_SECTI ON)
) FI ni shMut exJobHook();
voi d

Transi t Requesti ngState()

Mit exRequest HappenedAt = Current d ock();
if (MachineState != STATE NORMAL

fprlt(ntf s§ derr, "bogus State transition to REQUESTING state\n");
exi -

chi neState = STATE_REQUESTI NG
CSRequest Hook() ;

void o )
TransitInCritical SectionState()

ProceedCSAt = Currentd OCRE)
f (MachineState != STATE_REQUESTI NG) {

fprl?tf stderr, "bogus state transition to InCritical Section state\n");
exit( -

chineState = STATE_| N_CRI Tl CAL_SECTI ON;
Ent er CSHook () ;
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voi d
TransitExitingCritical SectionState()

if (MachineState !'= STATE_IN CRI Tl CAL SECTIO\I?{ o ,
fprintf(stderr, "bogus Stafe transifion to InCritical Section state\n");

exit( -1);

chineState = STATE_EXI TI NG _CRI Tl CAL_SECTI ON;
Exi t CSHook( ) ;
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