
A Supplemental Material for
A Token-Based Distributed Group Mutual

Exclusion Algorithm with Quorums
Hirotsugu Kakugawa,Member, IEEE, and Sayaka Kamei,Member, IEEE, and

Toshimitsu Masuzawa,Member, IEEE

Abstract— In this material, we show complete proof of correct-
ness ofTQGmx, and model checking ofTQGmx.

I. FORMAL PROOF OFCORRECTNESS

A. Invariants

The proposed algorithm is designed to maintain the following
invariants. Symbols used in invariants are shown in Figure 1.

• InvA: The main-token is maintained so that it is unique in
the system.

Vtok + Ctoken = 1 (1)

• InvB: tok.gSize counts the number of tokens in use.

TMAIN + Csubtoken + TSUB + Crelease = gSize (2)

• InvC: Maintenance of requests and timestamp values.

∀Pi : modei = IDLE ⇒

(tsi = tsReq[i]) ∧ (∀〈P, t, g〉 ∈ reqQ : P 6= Pi)

∧ (Ctoken,∗,i = Csubtoken,∗,i = 0) (3)

∀Pi : modei = TRYING ⇒

(tsi = tsReq[i] + 1) ∧ (∀〈P, t, g〉 ∈ reqQ : P 6= Pi)

∧ (Ctoken,∗,i = Csubtoken,∗,i = 0)

∨ (tsi = tsReq[i]) ∧ (∃〈P, t, g〉 ∈ reqQ : P = Pi)

∧ (Ctoken,∗,i = Csubtoken,∗,i = 0)

∨ (tsi = tsReq[i]) ∧ (∀〈P, t, g〉 ∈ reqQ : P 6= Pi)

∧ (Ctoken,∗,i = 1 ∧ Csubtoken,∗,i = 0)

∨ (tsi = tsReq[i]) ∧ (∀〈P, t, g〉 ∈ reqQ : P 6= Pi)

∧ (Ctoken,∗,i = 0 ∧ Csubtoken,∗,i = 1) (4)

∀Pi : modei = INCS⇒

(tsi = tsReq[i]) ∧ (∀〈P, t, g〉 ∈ reqQ : P 6= Pi)

∧ (Ctoken,∗,i = Csubtoken,∗,i = 0) (5)

∀Pi :

(∀〈P, t, g〉 ∈ Mrequest : P = Pi ⇒ t ≤ tsi) (6)

∧ (∀〈P, t, g〉 ∈ tmpQ : P = Pi ⇒ t ≤ tsi) (7)

∧ (|{〈P, t, g〉 ∈ reqQ : P = Pi}| ≤ 1) (8)

• InvD: Current group is maintained bygName.

gSize = 0 ⇔ gName = ⊥ (9)

∧ ∀Pi :

(modei 6= IDLE ⇔ grpi 6= ⊥) (10)

∧ (∀〈P, t, g〉 ∈ reqQ : P = Pi ⇒ g = grpi) (11)

∧ (Csubtoken,∗,i = 1 ⇒ gName = grpi) (12)

∧ (modei = INCS⇒ gName = grpi) (13)

• InvE: Process mode and local variables.

∀Pi :

(modei = INCS⇔

(typei = MAIN ∨ typei = SUB)) (14)

∧ (typei = MAIN

⇒ (toki 6= ⊥ ∧ homei = ⊥)) (15)

∧ (typei = SUB ⇒ toki = ⊥) (16)

∧ (typei = SUB ⇔ homei 6= ⊥) (17)

∧ (homei 6= Pi) (18)

• InvF: Transfer of the main-token.

(Ctoken = 1) ⇒

(gSize = 0) (19)

∧ (∀Pi : acqsi = ∅) (20)

∧ (∀Pi : acksi = ∅) (21)

• InvG: Management of the main-token and sub-tokens.

∀Pi :

(∀Pk : 0 ≤ Ssubtoken,i,k − Rrelease,k,i) (22)

∧ (∀Pk : Csubtoken,i,k + Btype,k,SUB + Crelease,k,i

= Ssubtoken,i,k − Rrelease,k,i) (23)

∧ (∀Pk : Ssubtoken,i,k − Rrelease,k,i > 0

⇒ toki 6= ⊥) (24)

∧ ∀Pi :

(∀Pk : 0 ≤ Rsubtoken,k,i − Srelease,i,k ≤ 1) (25)

∧ ∀Pk : (Rsubtoken,k,i − Srelease,i,k = 1

⇔ homei = Pk) (26)



• Vtok is the number of processPi such thattoki 6= ⊥.
• gSize is the value oftok.gSize.
• gName is the value oftok.gName.
• tsReq[i] is the value oftok.tsReq[i].
• reqQ is the set of all requests intok.reqQ.
• tmpQ is the set of all requests intmpQi for somePi.
• TMAIN (resp. TSUB) is the number of processPi such that

typei = MAIN (resp.= SUB).
• Ct is the total number of messages of typet in transit.
• Ct,i,k (resp.Ct,∗,k) is the number of messages of typet in

transit fromPi (resp. any process) toPk.
• Mt is the set of all messages of typet in transit.
• St,i,k is the total number ofsends of message of typet

from Pi to Pk since the system startups.
• Rt,i,k is the total number of receipts of message of typet

from Pi to Pk since the system startups.
• Bacqs,i,j is 1 if acqsi ∋ Pj and 0 otherwise.
• Backs,i,j is 1 if acksi ∋ Pj and 0 otherwise.
• Btype,k,SUB is 1 if typek = SUB and 0 otherwise.

Fig. 1. Symbols used in invariants.

• InvH: Sendingacquired, leave, ack messages.

∀Pi∀Pk :

(0 ≤ Sacquired,i,k − Sleave,i,k

≤ Sacquired,i,k − Rack,k,i ≤ 1) (27)

∧ (Sacquired,i,k − Sleave,i,k = Bacqs,i,k) (28)

∧ (Sleave,i,k − Rack,k,i = Backs,i,k) (29)

∧ (toki = ⊥ ⇒ acqsi = acksi = ∅) (30)

• InvI: Receivingacquired, leave, ack messages and main-
tenance ofholderi.

∀Pi∀Pk :

(Rleave,k,i = Sack,i,k) (31)

∧ (Racquired,k,i − Rleave,k,i = 1

⇔ holderi = Pk) (32)

• InvJ: Local variables.

∀Pi :

(toki = ⊥ ⇒ ¬leavingi) (33)

∧ (toki = ⊥ ⇒ acksi = ∅) (34)

∧ (acksi 6= ∅ ⇒ acqsi = ∅) (35)

∧ (leavingi ⇔ acksi 6= ∅) (36)

∧ (leavingi ⇒ gSize = 0) (37)

B. Preliminary lemmas

First, only for the purpose of simplicity of invariant description,
we show the following lemma.

Lemma 1: Invariant InvA is maintained for any execution.
Proof: When the system is initialized,tok0 6= ⊥, toki = ⊥

for eachPi( 6= P0) and Ctoken = 0 hold. Thus, invariant InvA is
maintained initially.

A token message is sent at lines 4.13 and 12.14 by process
Pi such thattoki 6= ⊥ by conditions of line 4.1 and 12.4. Since
the value oftoki becomes⊥ just after atoken message is sent,

the invariant is maintained. When atoken message is received
by a process, sayPk, the main-token is held byPk (line 5.1),
and hence the invariant is maintained.

Because there is no other assignment statement for local
variabletoki, the invariant is maintained.

For simplicity of description of invariants, the (unique) main-
token is denoted bytok, which may be held by a process or may
be in a token message in transit. We denote, by simplygSize
in invariant description,toki.gSize at some processPi such that
toki 6= ⊥ without ambiguity since the main-token is exactly one.
Similarly, we use notationgName and reqQ.

Below, by induction, we show that invariants are maintained.
First, we show a base step.

Lemma 2: (Base step) When the system is initialized, all
the invariants are satisfied, and precondition ofrequestEvent is
satisfied at each process.

Proof: It is easy to check from initialization procedure.
Next, we start induction step.
Lemma 3: (Induction step, precondition of message receipt)

Suppose that a message arrives atPi provided that (1) precondi-
tion of a handler that sends the message is satisfied, and (2) all
the invariants are satisfied just before the message arrivesat Pi.
Then, precondition of corresponding handler is satisfied.

Proof: For each message type, we check corresponding
precondition just before a message arrives atPi.

• A 〈token, tok, t〉 message fromPk:

– toki = ⊥: Since atoken message is in transit, we have
Ctoken = 1. By InvA (1), we have the condition.

– gSize = 0: Ctoken = 1 implies gSize = 0 by InvF (19).
– typei = ⊥: By InvC (5), we havemodei 6= INCS. By

InvE (14), the condition holds.
– acksi = ∅ holds by InvH (30) andtoki = ⊥.
– acqsi = ∅ holds by InvH (30) andtoki = ⊥.
– ¬leavingi holds by InvJ (33) andtoki = ⊥.
– homei = ⊥ holds bytypei = ⊥ and InvE (17).

• A 〈subtoken, t〉 message fromPk:

– toki = ⊥: When Pk sends the message,tokk 6= ⊥

holds. Then,gSize > 0 becomes true whenPk sends
the message. By InvA (1), InvB (2) and InvF (19),
tokk 6= ⊥ is true whenPi receives the message. Thus,
the condition holds by InvA (1).

– typei = ⊥: By InvC (5), we havemodei 6= INCS. By
InvE (14), the condition holds.

– homei = ⊥ holds bytypei = ⊥ and InvE (17).
– ¬leavingi holds bytoki = ⊥ and InvJ (33).

• An 〈acquired〉 message fromPk:

– holderi = ⊥: Since St,j,ℓ = Ct,j,ℓ + Rt,j,ℓ for any
messaget and any processj and ℓ, we have a relation
Sleave,k,i −Rack,i,k = Cleave,k,i + Cack,i,k by InvI (31).
Just before the message is sent byPk, Sleave,k,i −

Rack,i,k = 0 holds by InvH (29) sinceacksk = ∅
holds. Thus, we haveCleave,k,i = Cack,i,k = 0. At
the same time,Sacquired,k,i − Sleave,k,i = 0 holds by
InvH (28) since acqsk = ∅ holds. By FIFO prop-
erty of a channel, we haveCacquired,k,i = 0 because
Sacquired,k,i − Sleave,k,i = 0 and Cleave,k,i = 0 hold.
This impliesRacquired,k,i = Rleave,k,i.
Just after the message is sent byPk, we have
Sacquired,k,i − Sleave,k,i = 1. By FIFO property of a



channel,Racquired,k,i = Rleave,k,i is maintained until
Pi receives the message. This implies the condition by
InvI (32).

• A 〈request〉 message: Precondition is trivially satisfied.
• A 〈release〉 message fromPk:

– toki 6= ⊥: Just before the message arrives atPi,
Ssubtokeni,k − Rrelease,k,i > 0 holds by InvG (23). By
InvG (24), the condition holds.

– gSize > 0: Just before the message is received,
Crelease > 0 holds. This impliesgSize > 0 by InvB (2).

– ¬leavingi: SincegSize > 0, the condition is implied by
InvJ (37).

• A 〈leave〉 message fromPk:

– holderi = Pk: Just before the message is sent byPk,
Sacquired,k,i − Sleave,k,i = 1 holds by InvH (27). By
FIFO property of a channel, we haveRacquired,k,i−1 =

Rleave,k,i just before the message arrives atPi. Hence,
the condition is implied by InvI (32).

• An 〈ack〉 message fromPk:

– Pk ∈ acksi 6= ∅: By InvH (29), it is easy to see that0 ≤
Sleave,i,k − Rack,k,i ≤ 1 holds. By relationSleave,i,k −

Rack,k,i = Cleave,i,k + Cack,k,i from InvI (31), we have
Sleave,i,k − Rack,k,i = 1 sinceCack,k,i > 0 holds. By
InvH (29), we haveBacks,i,k = 1 and henceacksi ∋ Pk.

– acqsi = ∅ holds by InvJ (35).
– leavingi is implied by acksi 6= ∅ and InvJ (36).
– toki 6= ⊥ is implied by leavingi and InvJ (33).
– gSize = 0 holds byleavingi and InvJ (37).

Thus, for each message type, precondition of a message handler
is satisfied.

Lemma 4: (Induction step, precondition of procedure call)
Suppose that a handler is invoked with precondition being sat-
isfied when all the invariants are maintained. Then, precondition
of any procedure invoked from the handler is also satisfied.

Proof: We check each invocation of procedure in each
handler and procedure.

• In procedurehandlePendingRequests: ProcedurebeginToken-
Transfer is invoked at line 4.10.

– toki 6= ⊥ holds by precondition.
– gSize = 0 holds by line 4.1.
– ¬leavingi holds by line 4.1.
– acqsi 6= ∅ holds by line 4.9.
– acksi = ∅ holds by¬leavingi and InvJ (36).

• In procedurebeginTokenTransfer: This invokes no procedure.
• In requestEvent hander: It invokes procedurehandlePendin-

gRequests at line 2.5:

– toki 6= ⊥ holds by line 2.2.

• In releaseEvent hander: ProcedurehandlePendingRequests is
invoked at line 3.6.

– toki 6= ⊥ holds by typei = MAIN at line 3.1 and
precondition.

• In token message handler: ProcedurehandlePendingRe-
quests is invoked at line 5.14.

– toki 6= ⊥: Assume that the message is sent byPk. The
message is sent at lines 4.13 or 12.14. Then,tokk 6= ⊥

holds whenPk sends the message by condition at line
4.1 (in case of line 4.13) and condition at line 12.4 (in
case of line 12.14). Thus, the value intok in the token

is not ⊥. Thus, by line 5.1, the preconditiontoki 6= ⊥

is satisfied.
• In subtoken, acquired and leave message handlers: No

procedure is invoked.
• In request message handler: ProcedurehandlePendingRe-

quests is invoked at line 8.5.
– toki 6= ⊥ holds by line 8.1.

• In release message handler: ProcedurehandlePendingRe-
quests is invoked at line 9.4.

– toki 6= ⊥ holds by precondition.
• In ack message hander: ProcedurehandlePendingRequests

is invoked at line 12.11.
– toki 6= ⊥ holds by line 12.4.

Lemma 5: (Induction step, invariants) Suppose that a handler
is invoked with precondition being satisfied and all the invariants
are satisfied just before the handler is invoked. Then, execution
of a handler maintains all the invariants.

Proof: First, we check if each procedure maintains the
invariants or not by assuming that precondition is satisfiedon
invocation.

• ProcedurehandlePendingRequests:
– Lines 4.4–4.6. The value oftypei, gSize, gName, modei

and reqQ are changed. We check only invariants in
which these values appear.
∗ InvB (2): Before the statements are executed,

modei = TRYING holds by InvC (3, 4 and 5) since
the request ofPi is in reqQ. By InvE (14), we have
typei = ⊥. Thus, by the assignment statements, both
TMAIN andgSize are incremented by one, respectively,
and hence the invariant is maintained.

∗ InvC (5): Before the assignment statements, we have
exactly one item ofPi’s request inreqQ and tsi =

tsReq[i] by InvC (8), andCtoken,∗,i = Csubtoken,∗,i =

0 by InvC (3, 4 and 5). After the assignment state-
ments are executed, we havetsi = tsReq[i], no item of
Pi’s request inreqQ, andCtoken,∗,i = Csubtoken,∗,i =

0. Thus the invariant is maintained.
∗ InvC (3 and 4): Since we havemodei = INCS, these

invariants are trivially maintained.
∗ InvC (8): Since we have no item ofPi’s request in

reqQ, the invariant is maintained.
∗ InvD (9): Before the assignment statements, we have

modei = TRYING by InvC (3,4 and 5) since a request
item of Pi is in reqQ. This implies thatgrpi 6= ⊥
by InvD (10). After the statements are executed, we
have gSize = 1 and gName = grpi 6= ⊥. Thus, the
invariant is maintained.

∗ InvD (10): Before the assignment statements, we have
grpi 6= ⊥. After the statements are executed, we have
modei = INCS. Thus, the invariant is maintained.

∗ InvD (12): Before the assignment statements, we have
modei = TRYING. By condition gSize = 0 at line
4.1, we haveCsubtoken = 0 by InvB (2), and hence
Csubtoken,∗,i = 0 holds. Thus, the invariant is trivially
maintained.

∗ InvD (13): SincegSize = 0, modej 6= INCS for
any Pj( 6= Pi). Thus, by assignment statement, the
invariant is clearly maintained.



∗ InvE (17): Before the assignment statements, we have
homei = ⊥ becausegSize = 0 holds by line 4.1
and by InvB (2) and InvE (17). Thus, the assignment
maintains the invariant.

∗ InvE (14): It is obvious by line 4.6.
∗ InvE (15): It is obvious sincehomei = ⊥ holds and

line 4.6.
∗ InvJ (37): Since we have¬leavingi by line 4.1, the

invariant is maintained.
– Line 4.10. As we will see shortly, invocation ofbegin-

TokenTransfer maintains all the invariants.
– Lines 4.12 – 4.13. The value ofVtoken, Ctoken and toki

are changed.
∗ InvA (1) is obviously maintained.
∗ InvE (15): BecausegSize = 0 (line 4.1) implies

typei = ⊥ by InvB (2), the invariant is maintained.
∗ InvC (4): Before the statement is executed, we have

modej = TRYING and tsj = tsReq[j] by InvC (3, 4
and 5) since there is an item ofPj ’s request inreqQ.
Specifically, the second term of InvC (4) holds for
Pj . By InvC (8), there is exactly one item ofPj ’s
request inreqQ. By InvC (4), we haveCtoken,∗,j =

Csubtoken,∗,j = 0.
After execution of the statements, we havetsj =

tsReq[j], no item ofPj ’s request inreqQ, Ctoken,∗,j =

1, and Csubtoken,∗,j = 0, and the third term of
InvC (4) holds forPj . Thus, the invariant is main-
tained.

∗ InvC (3 and 5): Since we havemodej = TRYING,
these invariants are trivially maintained.

∗ InvF (19) is maintained sincegSize = 0 holds by line
4.1.

∗ InvF (20 and 21): BeforePi sends the main-token,
we havetoki 6= ⊥, and thustokj = ⊥ for eachPj( 6=
Pi) holds. Henceacqsj = acksj = ∅ holds for each
Pj( 6= Pi) by InvH (30). Becauseacqsi = ∅ holds
by line 4.9, InvF (20) is maintained. After the main-
token is sent, since we have¬leavingi by line 4.1,
acksi = ∅ holds by InvJ (36), and thus InvF (21) is
maintained.

∗ InvJ (33) is maintained because¬leavingi holds by
line 4.1.

∗ InvJ (34) is maintained because¬leavingi holds by
line 4.1 and InvJ (36).

– Lines 4.21 and 4.23 – 4.24. The value ofgSize, typei,
modei and reqQ are changed.
∗ InvB (2): Before the assignments,modei = TRYING

holds by InvC (3, 4 and 5) since there is an item of
Pi’s request inreqQ. By InvE (14), we havetypei =

⊥. Thus, by execution of the statements,TMAIN and
gSize are incremented by one, respectively. Thus, the
invariant is maintained.

∗ InvC (5): Before the statements are executed, we have
modei = TRYING, tsi = tsReq[i] and Ctoken,∗,i =

Csubtoken,∗,i = 0 by InvC (3, 4 and 5). By InvC (8),
there is exactly one item ofPi’s request inreqQ.
After execution of the statements, we havemodei =

INCS and no item ofPi’s request inreqQ. Thus, the
invariant is maintained.

∗ InvC (3 and 4): Since we havemodei = INCS, these

invariants are trivially maintained.
∗ InvC (8): Since there is no item ofPi’s request in

reqQ, the invariant is maintained.
∗ InvD (9): Before the statements are executed, state-

ments at lines 4.10 and 4.13 are not executed so
that the condition of thewhile statement at line 4.17
is satisfied, because their executions yieldleavingi

or toki = ⊥. This implies that the condition of
if statement at line 4.3 is satisfied. Therefore, we
have gSize = 1 and gName 6= ⊥ by line 4.5. Thus,
execution of the statements maintains the invariant.

∗ InvD (10): Before the statements are executed, we
have modei = TRYING by InvC (3, 4 and 5) since
a request item ofPi is in reqQ. By InvD (11), we
havegrpi 6= ⊥. After the statements are executed, we
havemodei = INCS andgrpi is unchanged. Thus, the
invariant is maintained.

∗ InvD (11): Removing a request item ofPi trivially
maintains the invariant.

∗ InvD (13): By condition at line 4.19, the invariant is
maintained.

∗ InvE (14) is clearly maintained.
∗ InvE (15): toki 6= ⊥ holds by condition at line 4.17,

andhomei = ⊥ holds bytoki 6= ⊥ and InvE (15 and
17). Thus, the invariant is maintained.

∗ InvE (17) is maintained sincehomei = ⊥ holds.
∗ InvJ (37) is maintained since¬leavingi holds by line

4.17.

– Lines 4.21 and 4.27 – 4.28. The value ofgSize, Csubtoken
andSsubtoken,i,j are changed.

∗ InvB (2) is obviously maintained.
∗ InvC (4): Before execution of the statements, by

the same discussion for lines 4.22 – 4.23, we have
modej = TRYING, tsj = tsReq[j], Ctoken,∗,j =

Csubtoken,∗,j = 0, and there is exactly one item of
Pj ’s request inreqQ. After the execution of the state-
ments, we have no item ofPj ’s request inreqQ and
Csubtoken,∗,j = 1. Thus the invariant is maintained.

∗ InvC (3 and 5): Since we havemodej = TRYING,
these invariants are trivially maintained.

∗ InvC (8): Since we have no item ofPj ’s request in
reqQ, the invariant is maintained.

∗ InvD (12): Before the statements are executed, we
have grpi = g where g is the group such that
〈Pj , t, g〉 ∈ reqQ. By condition at line 4.19, we have
grpi = g = gName. Thus, the invariant is maintained.

∗ InvF (19) is maintained becauseCtoken=0 holds by
toki 6= ⊥ and InvA (1).

∗ InvG (22 and 23) is maintained sinceSsubtoken,i,j

and Csubtoken,i,j are simply incremented by one,
respectively.

∗ InvG (24) is maintained sincetoki 6= ⊥ holds.
∗ InvJ (37) is maintained since¬leavingi holds by line

4.17.

• ProcedurebeginTokenTransfer:

– Line 10.1 – 10.3. The values ofleavingi, Cleave, Sleave,
acksi andacqsi are changed.

∗ InvF (20 and 21): Becausetoki 6= ⊥ holds by
precondition,Ctoken = 0 holds. Thus, the invariants



are maintained.
∗ InvH (27): Before the statements are executed,

Sacquired,i,j − Sleave,i,j = Bacqs,i,j = 1 holds for
eachPj ∈ acqsi by InvH (28). At the same time,
Sleave,i,k − Racks,k,i = Backs,i,k = 0 for any Pk by
preconditionacksi = ∅ and InvH (29).
After the statements are executed, we have
Sacquired,i,k − Sleave,i,k = Bacqs,i,k = 0 for any Pk,
acqsi = ∅, andSacquired,i,k−Racks,k,i = Backs,i,k for
any Pk. Thus the invariant is maintained.

∗ InvH (28) is maintained becauseacqsi = ∅ holds
after the assignment statements are executed.

∗ InvH (29) is maintained becauseSleave,i,j−Rack,j,i =

1 holds for eachPj ∈ acksi after the assignment
statements are executed.

∗ InvH (30) is maintained by preconditiontoki 6= ⊥.
∗ InvJ (33) is maintained by preconditiontoki 6= ⊥.
∗ InvJ (34) is maintained sincetoki 6= ⊥.
∗ InvJ (35) is maintained sinceacqsi = ∅ andacksi 6= ∅

hold by the assignment statements.
∗ InvJ (36) is maintained sinceacksi 6= ∅ holds by the

assignment statements.
∗ InvJ (37) is maintained by preconditiongSize = 0.

Next, we show that each handler maintains invariants.

• requestEvent hander:

– Lines 2.1 and 2.3 – 2.4. The values ofmodei, tsi, grpi,
tsReq[i] and reqQ are changed.

∗ InvC (4): Before the statements are executed, we have
no item of Pi’s request inreqQ and Ctoken,∗,i =

Csubtoken,∗,i = 0 by InvC (3) with precondition
modei = IDLE. By execution of the statements, we
have modei = TRYING, tsi = tsReq[i] and there is
exactly one item ofPi’s request inreqQ. Thus the
invariant is maintained.

∗ InvC (3 and 5): Since we havemodei = TRYING,
these invariants are trivially maintained.

∗ InvC (8): Since there is exactly one item ofPi’s
request inreqQ after execution of the statements, the
invariant is maintained.

∗ InvD (10): Sincegi 6= ⊥, the invariant is clearly
maintained.

∗ InvD (11): Before the statements are executed, we
have modei = IDLE by precondition. By InvC (3),
there is no item ofPi’s request inreqQ. After the
statements are executed, we have only one item of
Pi’s request such that〈Pi, tsi, grpi〉 in reqQ. Thus,
the invariant is maintained.

∗ InvD (12): We haveCsubtoken,∗,i = 0 by InvC (3)
and bymodei = IDLE. Thus the invariant is trivially
maintained.

∗ InvD (13): Since we havemodei = TRYING after
the statements are executed, the invariant is trivially
maintained.

∗ InvE (14) is maintained by preconditiontypei = ⊥.

– Lines 2.1 and 2.7. The values ofmodei, tsi, grpi and
Mrequest are changed.

∗ InvC (4): Before execution of the statements, we have
tsi = tsReq[i], no item of Pi’s request inreqQ and
Ctoken,∗,i = Csubtoken,∗,i = 0. After execution of the

statements, we havetsi = tsReq[i] + 1 and modei =

TRYING. Thus, the invariant is maintained.
∗ InvC (3 and 5) are trivially maintained since we have

modei = TRYING.
∗ InvC (6): Since the value oftsi is incremented by one,

and a request message issued contains the value.
Thus, the invariant is maintained.

∗ InvD (10, 12 and 13) are maintained by the same
proof for the case of lines 2.1 and 2.3 – 2.4 shown
above.

∗ InvD (11): Before the statements are executed, there
is no request item ofPi. Thus, the invariant is trivially
maintained becausereqQ is unchanged.

∗ InvE (14) is maintained sincetypei = ⊥ by precon-
dition.

– Lines 2.1 and 2.9. The value ofmodei, tsi, grpi and
Mrequest are changed. This case is shown by simply
applying the case of lines 2.1 and 2.7 for eachPj ∈

(qi − {Pi}).
– Lines 2.1 and 2.10 – 2.13. The value oftmpQi is

changed.

∗ InvC (7): Since the value oftsi is incremented by one
at line 2.1,∀〈Pi, t, g〉 ∈ reqQi : t < tsi holds. Thus,
deleting such items does not violate the invariant
since an item with timestamp valuetsi is enqueued.

• releaseEvent hander:

– Lines 3.2 – 3.5. The values oftypei, modei, grpi, gSize
andgName are changed.

∗ InvB (2) is maintained since bothTMAIN and gSize
are decremented by one, respectively.

∗ InvC (3): Before the statements are executed,
modei = INCS holds by precondition. Since InvC (5)
holds before execution of the statements, the invariant
is maintained by assignment statement at line 3.2.

∗ InvC (4 and 5) are trivially maintained sincemodei =

IDLE holds.
∗ InvD (9) is maintained because the value ofgName

becomes⊥ iff the value ofgSize becomes zero.
∗ InvD (10) is clearly maintained.
∗ InvD (11): Before the statements are executed, there

is no request item ofPi in reqQ by InvC (5). Thus,
the invariant is trivially maintained.

∗ InvD (12): Before the statements are executed, we
have Csubtoken,∗,i = 0 by precondition modei =

INCS and InvC (5). Thus, the invariant is trivially
maintained.

∗ InvD (13) is trivially maintained because we have
modei = IDLE by execution of the statements.

∗ InvE (14) is maintained since we havemodei = IDLE

and typei = ⊥ by the assignment statements.
∗ InvE (17): Before the statements are executed, we

havehomei = ⊥ by InvE (15) andtypei = MAIN by
line 3.1. After the statements are executed, we have
typei = ⊥ and homei = ⊥. Thus the invariant is
maintained.

∗ InvF (19) is maintained because we haveCtoken = 0

by InvA (1) and preconditiontoki 6= ⊥.
∗ InvJ (37) is maintained by precondition¬leavingi.

– Line 3.6. Because all invariants are maintained before



invocation of procedurehandlePendingRequests, all in-
variants are maintained.

– Lines 3.9 – 3.11. The values ofSrelease, Crelease, typei,
modei, grpi andhomei are changed.

∗ InvB (2) is maintained sinceTSUB is decremented by
one andCrelease is incremented by one.

∗ InvC (3): Before the statements are executed,
modei = INCS holds by precondition. Since InvC (5)
holds before execution of the statements, the invariant
is maintained by assignment statement at line 3.11.

∗ InvC (4 and 5) are trivially maintained sincemodei =

IDLE holds.
∗ InvD (10) is clearly maintained by the assignments.
∗ InvD (11): Before the statements are executed, there

is no item ofPi’s request inreqQ by InvC (5). Thus,
the invariant is trivially maintained.

∗ InvD (12) Before the statements are executed, we
have Csubtoken,∗,i = 0 by precondition modei =

INCS and InvC (5). Thus, the invariant is trivially
maintained.

∗ InvD (13) is trivially maintained because we have
modei = IDLE by execution of the statements.

∗ InvE (14) is maintained since we havemodei = IDLE

and typei = ⊥ by the statements.
∗ InvE (17): We havetypei = ⊥ and homei = ⊥

by execution of the statements. Thus the invariant
is maintained.

∗ InvE (18) is obviously maintained.
∗ InvG (25): Before sending arelease message, we

haveRsubtoken,k,i−Srelease,i,k = 1 by InvG (26) and
homei 6= ⊥ by precondition. By sending the message,
we haveRsubtoken,k,i − Srelease,i,k = 0. Thus the
invariant is maintained.

∗ InvG (26): Since we haveRsubtoken,k,i−Srelease,i,k =

0 and homei = ⊥ by execution, the invariant is
maintained.

• token message handler:

– Receipt of the message and Line 5.1. The value of
Ctoken, Vtok and toki are changed.

∗ InvA (1): Before the message arrives,toki = ⊥

holds by InvA (1). By receiving the message,Vtok

is incremented by one andCtoken is decremented by
one. Hence the invariant is maintained.

∗ InvC (5): Before the message is received, we have
Ctoken,∗,i = 1. Thus, by InvC (3, 4 and 5), we
have modei = TRYING and tsi = tsReq[i]. After
the statement is executed, we haveCtoken,∗,i = 0

andmodei = INCS at line 5.4. Thus, the invariant is
maintained.

∗ InvC (3 and 4): Since we havemodei = INCS at line
5.4, these invariants are trivially maintained.

∗ InvE (15 and 16) are maintained by precondition
typei = ⊥.

∗ InvF (19, 20 and 21) are maintained since we have
Ctoken = 0 by the assignment statement.

∗ InvH (30) is maintained since we havetoki 6= ⊥ by
the assignment statement.

∗ InvJ (33 and 34) are maintained since we havetoki 6=
⊥.

– Lines 5.2 – 5.3. The values ofacqsi and Sacquired,i,j

are changed.

∗ InvF (20) is maintained since we haveCtoken = 0.
∗ InvH (27): Before the statements are executed, we

have acqsi = ∅ by precondition, which implies
Bacqs,i,k = 0 for any Pk. By InvH (28), for anyPk,
we haveSacquired,i,k−Sleave,i,k = 0. By precondition
acksi = ∅, we haveSleave,i,k − Rack,k,i = 0 for for
any Pk by InvH (29). Thus, we haveSacquired,i,k −
Rack,k,i = 0 by InvH (27).
After the statements are executed, we have
Sacquired,i,j − Sleave,i,j = 1 and Sacquired,i,j −
Rack,j,i = 1. Thus, the invariant is maintained.

∗ InvH (28): Before the statements are executed,
Sacquired,i,k − Sleave,i,k = 0 holds for any Pk.
Thus, after the statements are executed, we have
Sacquired,i,j −Sleave,i,j = 1 iff Pj ∈ acqsi, and hence
the invariant is maintained.

∗ InvH (30) is trivially maintained since we havetoki 6=

⊥ by line 5.1.

– Lines 5.4 – 5.5. The values oftypei, modei, gSize and
gName are changed.

∗ InvB (2): Before the statements,typei = ⊥ holds by
precondition. SinceTMAIN andgSize are incremented
by one, respectively, the invariant is maintained.

∗ InvD (9): Since modei = TRYING holds before
the statements are executed, we havegrpi 6= ⊥

by InvD (10). Thus, execution of the statements
maintains the invariant.

∗ InvD (10): Since we havemodei = INCS and
gName = grpi 6= ⊥, the invariant is maintained.

∗ InvD (13): Before the statements are executed,
gName = ⊥ holds by preconditiongSize = 0 and
InvD (9). Thus,modej 6= INCS for anyPj( 6= Pi).
Thus, the invariant is maintained by execution of the
statements.

∗ InvE (14) is clearly maintained by the assignments.
∗ InvE (15) is maintained since we havetoki 6= ⊥ by

line 5.1 andhomei = ⊥ by precondition.
∗ InvE (17) is maintained sincehomei = ⊥ andtypei =

MAIN .
∗ InvF (19) is obviously maintained sinceCtoken = 0

holds.
∗ InvJ (37) is maintained by precondition¬leavingi.

– Lines 5.7 – 5.13. The values oftmpQi, tsReq andreqQ
are changed.

∗ InvC (8): We claim that there is no item ofPj ’s
request inreqQ if a request ofPj is enqueued into
reqQ at line 5.11. Suppose contrary that there exists
a request item〈Pj , t, g〉 ∈ reqQ. SincePj ’s request
is in reqQ, we havemodej = TRYING and tsj =

tsReq[j] by InvC (3, 4 and 5). By InvC (7), we have
∀〈Pj , t

′, g′〉 : t′ ≤ tsj . By condition of enqueue at
line 5.9, each request item ofPj in tmpQi is never
enqueued intoreqQ; a contradiction. Therefore, the
invariant is maintained.

∗ InvC (4): Request items that are not enqueued into
reqQ never violate the invariant. Thus, we con-
sider each request item〈Pj , t, g〉 which is enqueued.



Consider just before the request item ofPj is de-
queued. SincetsReq[j] < t holds, by InvC (3, 4
and 5), we havemodej = TRYING and Ctoken,∗,j =

Csubtoken,∗,j = 0. Thus, after execution of lines 5.10
and 5.11 forPj , we havetsReq[j] = t and an request
item of Pj in reqQ. Thus, InvC (4) is maintained for
Pj .

∗ InvC (3 and 5) are trivially maintained sincemodej =

TRYING holds for eachPj whose request item is
enqueued intoreqQi.

∗ InvC (7) is maintained sincetmpQi becomes empty.
∗ InvD (11): LetPj be any process whose request item

is enqueued at line 5.11. Then, as discussed above,
modej = TRYING holds. Let〈Pj , t, g〉 be the request
item of Pj in question. By InvC (3, 4, 5 and 7),
tok.tsReq[j] < t implies tsj = t. Thus, we haveg =

grpj by execution of the statements, and hence the
invariant is maintained.

Since all invariants are maintained just before procedure
handlePendingRequests is invoked, all invariants are
maintained.

• subtoken message handler:

– Receipt of the message and Line 6.1. The values of
typei, modei, homei, Rsubtoken,k,i andCsubtoken,k,i are
changed. Just before the statements are executed, we
haveRsubtoken,k,i − Srelease,i,k = 0 holds by InvG (25
and 26) sincehomei = ⊥ holds by precondition.

∗ InvB (2): Before the message is received,typei = ⊥
holds by precondition. By receiving the message and
the assignment statements,Csubtoken is decremented
by one andTSUB is incremented by one. Thus the
invariant is maintained.

∗ InvC (5): Before the message is received, we have
Csubtoken,∗,i > 0. By InvC (3, 4 and 5), we have
modei = TRYING, tsi = tsReq[i], no request item
of Pi in reqQ and Csubtoken,∗,i = 1. After execut-
ing the statements, we havemodei = INCS and
Csubtoken,∗,i = 0. Thus the invariant is maintained.

∗ InvC (3 and 4): Since we havemodei = INCS, these
invariants are trivially maintained.

∗ InvD (10): Before the statements are executed,grpi 6=

⊥ holds by InvD (10) sincemodei = TRYING

holds. Thus, execution of the statements maintains
the invariant.

∗ InvD (12): SinceCsubtoken,∗,i is decremented by one,
the invariant is trivially maintained.

∗ InvD (13): SincegName = grpi holds before the
message is received, the invariant is maintained.

∗ InvE (14) is obviously maintained by the assign-
ments.

∗ InvE (16) is maintained by preconditiontoki = ⊥.
∗ InvE (17) is obviously maintained.
∗ InvE (18) is maintained sincePk 6= Pi by lines 4.22

and 4.28.
∗ InvG (25) is maintained becauseRsubtoken,k,i −

Srelease,i,k = 1 holds by receiving the message.
∗ InvG (26) is maintained since we havehomei = Pk

by the assignment statements.

• acquired message handler:

– Receipt of the message and Line 7.1. The values of
holderi, Cacquired,k,i andRacquired,k,i are changed.

∗ InvI (32): Before the statements are executed,
holderi = ⊥ holds by precondition, and hence
Racquired,j,i − Rleave,j,i = 0 holds for anyPj by
InvI (32). After the statements are executed, we have
Racquired,j,i−Rleave,j,i = 1 andholderi = Pk, which
implies the invariant.

• request message handler:
– Receipt of the message and Lines 8.2 – 8.4. The value

of Mrequest, tsReq[k] and reqQ are changed.
∗ InvC (8): In casetsReq[k] ≥ t holds, the invariant is

maintained. Thus, we consider a case thattsReq[k] <

t holds. We claim that there is no request item of
Pk in reqQ. Suppose contrary that there exists a
request item ofPk in reqQ. Before the statements
are executed, by InvC (4), we havetsk = tsReq[k]

holds. Since the value oftsk is non-decreasing, we
have t ≤ tsk. Thus, we havet ≤ tsk = tsReq[k].
This is a contradiction becausetsReq[k] < t holds by
assumption. Therefore, there is no request item ofPk

in reqQ, and hence the invariant is maintained.
∗ InvC (4): Before the statements are executed, there

is no request item ofPk in reqQ and tsReq[k] < t ≤

tsk holds. By InvC (4), we havemodek = TRYING,
Ctoken,∗,k = Csubtoken,∗,k = 0 and tsk = tsReq[k] +

1. Thus, we havet = tsk. After the statements are
executed, we havetsReq[k] = t = tsk, and a request
item of Pk is enqueued intoreqQ. Thus, the invariant
is maintained.

∗ InvC (3 and 5): Since we havemodek = TRYING,
the invariants are trivially maintained.

∗ InvC (6) is maintained since an item is removed from
Mrequest.

∗ InvC (8) is maintained since there is no request item
of Pk before execution of the statements.

∗ InvD (11): In case the request item ofPk is not
enqueued intoreqQ, the invariant is trivially main-
tained. Consider a case that it is enqueued. Then,
as discussed above,modek = TRYING holds. Let
〈Pk, t, g〉 be the request item in question. By InvC (3,
4, 5 and 6),tok.tsReq[k] < t implies tsk = t. Thus,
we haveg = grpk by execution of the statements,
and hence the invariant is maintained.

– Line 8.5. All invariants are maintained because all
invariants are satisfied before invocation of procedure
handlePendingRequests.

– Receipt of the message and Line 8.8. The value of
Mrequest is changed.

∗ InvC (6): Since arequest message is simply en-
queued into a queue, the invariant is maintained.

– Receipt of the message and Lines 8.10 – 8.11. The
values ofMrequest and tmpQ are changed.

∗ InvC (6): Since arequest message is simply for-
warded, the invariant is maintained.

∗ InvC (7): By non-decreasing property oftsk, we have
t ≤ tk. Thus, the invariant is maintained.

• release message handler: LetPk be the process that sent
the message.



– Receipt of the message and Lines 9.1 – 9.3. The value of
Crelease,k,i, Rrelease,k,i, gSize andgName are changed.

∗ InvB (2) is maintained sinceCrelease,k,i andgSize are
decremented by one, respectively.

∗ InvF (19) is maintained since we haveCtoken = 0 by
InvA (1) and preconditiontoki 6= ⊥.

∗ InvG (22): Before the message is received,
Crelease,k,i > 0 holds, which impliesSsubtoken,i,k −

Rrelease,k,i > 0 by InvG (23). By receiving the
message, we haveSsubtoken,i,k−Rrelease,k,i ≥ 0, and
hence the invariant is maintained.

∗ InvG (23) is maintained because, by receiving the
message,Crelease,k,i is decremented by one, and
Rrelease,k,i is incremented by one.

∗ InvG (24) is maintained by preconditiontoki 6= ⊥.
∗ InvD (9) is maintained because the value ofgName

becomes⊥ iff the value of gSize becomes zero.
∗ InvD (12): Before the message is received, we have

gSize = 1 and Crelease = 1, and by InvB (2), we
haveCsubtoken,∗,i = 0. Thus, the invariant is trivially
maintained.

∗ InvD (13) is maintained becausemodei 6= INCS
holds before the message is received by InvB (2).

∗ InvJ (37) is maintained by precondition¬leavingi.

– Line 9.4. All invariants are maintained because all of
them are maintained just before procedurehandlePend-
ingRequests is called.

• leave message handler: LetPk be the process that sent the
message.

– Receipt of the message and Lines 11.1 – 11.2. The
values ofRleave,k,i, Sack,i,k andholderi are changed.

∗ InvI (31) is maintained because, by receiving the
message,Rleave,k,i and Sack,i,k are incremented by
one, respectively.

∗ InvI (32): Before the message is received, we have
Racquired,k,i − Rleave,k,i = 1 by InvI (32) be-
causeholderi = Pk by precondition. After receiv-
ing the message and execution of the statements,
Racquired,k,i − Rleave,k,i = 0 and holdsi = ⊥ hold.
Thus the invariant is maintained.

• ack message handler: LetPk be the process that sends the
message.

– Receipt of the message and Lines 12.1 – 12.3. The
values of Rack,k,i, acksi, Backs,i,k and leavingi are
changed.

∗ InvF (20) is maintained becauseCtoken = 0 holds by
InvA (1) and toki 6= ⊥ by precondition.

∗ InvH (27): Before the message is received,Backs,i,k =

1 holds by preconditionPk ∈ acksi. By InvH (29),
we haveSleave,i,k − Rack,k,i = 1. By precondition
acqsi = ∅, we haveBacqs,i,k = 0, which implies
Sacquired,i,k − Sleave,i,k = 0 by InvH (28). By re-
ceiving the message, we haveSleave,i,k − Rack,k,i =

0, and hence we haveSacquired,i,k − Rack,k,i =

Sacquired,i,k − Sleave,i,k = 0. Thus the invariant is
maintained.

∗ InvH (29) is maintained because we haveSleave,i,k −
Rack,k,i = Backs,i,k = 0 by receiving the message
and execution of the assignments.

∗ InvH (30) is trivially maintained by precondition
toki 6= ⊥.

∗ InvJ (33 and 34) are maintained by precondition
toki 6= ⊥.

∗ InvJ (35) is maintained by preconditionacqsi = ∅.
∗ InvJ (36): We have¬leavingi (line 12.3) when

acksi = ∅ (line 12.2), andleavingi by precondition is
kept unchanged whenacksi 6= ∅. Thus, the invariant
is maintained.

∗ InvJ (37) is maintained by preconditiongSize = 0.
– Line 12.5. Execution of this line is discussed in con-

junction with lines 12.9 – 12.10 and 12.14. See below.
– Lines 12.7 – 12.8. The values ofacqsi and Sacquire,i,j

are changed.
∗ InvH (27): Before the message is received,acksi =

{Pk} holds by condition at line 12.2. Thus, after the
message is received. we haveSacquired,i,ℓ−Rack,ℓ,i =

0 for any Pℓ by InvH (27).
Before the statements are executed, we have
Bacqs,i,ℓ = 0 for any Pℓ by preconditionacqsi = ∅.
Thus, by InvH (28),Sacquired,i,ℓ−Sleave,i,ℓ = 0 holds
for any Pℓ.
After the statements are executed, we have
Sacquired,i,k −Sleave,i,k = Sacquired,i,k −Rack,k,i = 1

iff Pk ∈ acqsi. Thus the invariant is maintained.
∗ InvH (28): After the statements are executed, we have

Sacquired,i,k − Sleave,i,k = 1 if and only if Pk ∈

acqsi. This is equivalent toSacquired,i,k−Sleave,i,k =

Backs,i,k for eachPk ∈ acqsi, and hence the invariant
is maintained.

∗ InvH (30) is maintained by preconditiontoki 6= ⊥.
∗ InvJ (35) is maintained sinceacksi = ∅ by line 12.2.

– Line 12.9 – 12.10 with line 12.5. The values ofreqQ,
typei, modei, gSize and gName are changed.
∗ InvB (2): Before the statements are executed, we

have typei = ⊥ by InvB (2) becausegSize = 0

holds by precondition, and henceTMAIN = 0 holds.
By execution of the statements,TMAIN and gSize are
incremented by one, respectively. Thus the invariant
is maintained

∗ InvC (5): Before the statements are executed, we
havemodei = TRYING, tsi = tsReq[i] and Ctoken =

Csubtoken = 0 by InvC (3, 4 and 5) because a
request item ofPi is in reqQ. After the statements
are executed,modei = INCS holds and the request
item is removed. Thus, the invariant is maintained.

∗ InvC (3 and 4) are trivially maintained since we have
modei = INCS.

∗ InvC (8) is clearly maintained by dequeue operation
on reqQ.

∗ InvD (9): Before the statements are executed, a re-
quest item ofPi is in reqQ. This impliesmodei =

TRYING by InvC (3, 4 and 5). By InvD (10), we have
grpi 6= ⊥ becausemodei = TRYING holds. Thus, the
assignment statements maintain the invariant.

∗ InvD (10) is maintained since we havemodei =

INCS andgrpi 6= ⊥.
∗ InvD (11) is trivially maintained since a request item

of Pi is simply dequeued.
∗ InvD (12): Before the statements are executed,



Csubtoken,∗,i = 0 holds by preconditiongSize = 0 and
InvB (2). Thus, the invariant is trivially maintained.

∗ InvD (13): Before the statements are executed,
modej 6= INCS holds for anyPj by precondition
gSize = 0 and InvB (2). After the statements are
executed,Pi is the only process such thatmodei =

INCS. Thus, the invariant is maintained.
∗ InvE (14) is maintained since we havemodei = INCS

and typei = MAIN by execution of the statements.
∗ InvE (15): We havetypei = ⊥ before the statements

are executed. By InvE (15 and 17),typei = ⊥

implies homei = ⊥. Because we havetypei = MAIN

by execution of the statements andtoki 6= ⊥ by
precondition, the invariant is maintained.

∗ InvE (17) is maintained because we havetypei =

MAIN and toki 6= ⊥.
∗ InvJ (37) is maintained since¬leavingi holds by line

12.3.
– Line 12.11. All the invariants are maintained since all

of them are satisfied before procedurehandlePendin-
gRequests is invoked.

– Line 12.14 with line 12.5. The values ofCtoken, Vtok

and toki are changed.
∗ InvA (1): Before execution of the statements, we have

Vtok = 1 by precondition, and henceCtoken = 0 holds.
Thus, by execution of the statements, we haveVtok =

0 andCtoken = 1.
∗ InvC (4): Before the statements are executed, we

havemodei = TRYING, tsi = tsReq[i] and Ctoken =

Csubtoken = 0, as discussed for the case of line 12.9
– 12.10. After the statements are executed, we have
Ctoken = 1 and the request item is removed. Thus,
InvC (4) is maintained.

∗ InvC (3 and 5) are trivially maintained since we have
modei = TRYING.

∗ InvC (8) is clearly maintained by dequeue operation
on reqQ.

∗ InvE (15): Before the statements are executed, we
have typei = ⊥ by InvB (2) because of precondition
gSize = 0. Thus, the invariant trivially holds.

∗ InvH (30) is maintained sinceacqsi = ∅ holds by
precondition andacksi = ∅ holds by line 12.2.

∗ InvJ (33 and 34) are maintained sincetoki 6= ⊥ holds.

Lemma 6: Suppose thatrequestDonei event is triggered as-
suming that (1) precondition of message handler or procedure, in
which the event is triggered, is satisfied, and (2) all the invariants
are satisfied on invocation of message handler or procedure.Then,
precondition ofreleaseEvent handler becomes true, and it remains
true until releaseEvent handler is invoked.

Proof: First, let us observe whenrequestDonei is triggered.
The event triggered at lines 4.7, 4.25, 5.6, 6.2 and 12.12.

• Line 4.7 (in procedurehandlePendingRequests):
– modei = INCS andtypei = MAIN by line 4.6.
– toki 6= ⊥ and¬leavingi by line 4.1.
– gSize > 0 by line 4.5.
– When procedurehandlePendingRequests is invoked,

gSize = 0 holds, and hence we haveacksi = ∅ by
InvJ (36) and¬leavingi. The valueacksi is unchanged
in the procedure.

• Line 4.25 (in procedurehandlePendingRequests):

– modei = INCS andtypei = MAIN by line 4.24.
– toki 6= ⊥ and¬leavingi by line 4.17.
– gSize > 0 by line 4.23.
– By the same reason as the case for line 4.7, we have

acksi = ∅.

• Line 5.6 (in token message handler):

– modei = INCS andtypei = MAIN by line 5.4.
– toki 6= ⊥ by line 5.1.
– ¬leavingi by precondition.
– gSize > 0 by line 5.5.
– acksi = ∅ by precondition.

• Line 6.2 (in subtoken message handler):

– modei = INCS andtypei = SUB by line 6.1.
– toki = ⊥ by precondition.
– ¬leavingi by precondition.
– acksi = ∅ by InvJ (36).

• Line 12.12 (inack message handler)

– modei = INCS andtypei = MAIN by line 12.9.
– toki 6= ⊥ by line 12.4 (and precondition).
– ¬leavingi by line 12.3.
– gSize > 0 by line 12.10.
– acksi = ∅ by line 12.2.

Thus, whenrequestDonei event is triggered, precondition of
releaseEvent handler is satisfied.

Next, we show that precondition ofreleaseEvent handler is
maintained untilreleaseEvent handler is triggered.

• modei = INCS is maintained because the value ofmodei

becomes IDLE only in releaseEvent handler (lines 3.2 and
3.11). SincerequestEvent handler is not invoked before
releaseEvent handler is invoked, the value ofmodei is
maintained.

• typei = MAIN ∨ typei = SUB is maintained by InvE (14).
• When typei = MAIN , toki 6= ⊥ holds by InvE (15).
• When typei = MAIN , gSize > 0 holds InvB (2).
• When typei = SUB, toki = ⊥ holds by InvE (16).
• When typei = SUB, homei 6= ⊥ holds by InvE (17).
• ¬leavingi holds by InvJ (33) and InvJ (37).
• acksi = ∅ holds by¬leavingi and InvJ (36).

Thus, the precondition ofreleaseEvent handler is maintained
by invariants untilreleaseEvent handler is invoked.

Lemma 7: Suppose thatreleaseDonei event is triggered assum-
ing that (1) precondition of message handler or procedure, in
which the event is triggered, is satisfied, and (2) all the invariants
are satisfied on invocation of message handler or procedure.Then,
precondition ofrequestEvent handler becomes true and it remains
true until requestEvent handler is invoked.

Proof: Note thatreleaseDonei event is triggered at line 3.13
only. Since we havetypei = ⊥ and modei = IDLE at lines 3.2
and 3.11 whenreleaseDonei event is triggered. Thus, precondition
of requestEvent handler is satisfied whenreleaseDonei event is
triggered.

Next, we show that the precondition is maintained untilre-
questEvent handler is invoked.

• By InvC (6), eachrequest message in transit issued byPi

has timestamp value less than or equal totsi. Thus, each
request message issued byPi is not enqueued intoreqQ
becausetsi = tsReq[i] holds.



• There is no request item ofPi in reqQ by InvC (3).
• There is notoken and subtoken message in transit toPi

by InvC (3).
Thus,Pi never receive anytoken andsubtoken message until

Pi invokes requestEvent handler. Because the value ofmodei is
not changed, the value ofmodei is maintained. By InvE (14), we
havetypei = ⊥. Since the value ofmodei is maintained, the value
of typei is also maintained.

Therefore, the precondition ofrequestEvent handler is main-
tained untilrequestEvent handler is invoked.

Theorem 1: For any execution, the proposed algorithm main-
tains all the invariants, and each handler is invoked with precon-
dition being satisfied.

C. Safety property

Theorem 2: (Safety) For any execution, no two processes in
different groups are in their critical sections simultaneously.

Proof: Assume contrary that there exists an execution and
two processesPi andPj such that

(modei = modej = INCS) ∧ (grpi 6= grpj).

By InvB (2), we havegSize > 0. This implies gName 6= ⊥

by InvD (9). By InvD (13), we havegName = grpi = grpj ; a
contradiction.

D. Liveness property

Theorem 3: (Liveness) A process that makes a request even-
tually enters its critical section, provided that priorityscheme of
the queue of the main-token is non-starving.

Proof: Assume contrary that there exists an execution such
that a requesting processPi does not enter its critical section
forever. Letgrpi be the group thatPi is requesting.

First, we consider a case that the request in question is
enqueued intoreqQ but the request is not granted forever. Because
priority scheme ofreqQ is non-starving, eventually the priority
of the request becomes the highest among any requests. Thus,
any execution eventually reaches a point such thatpeek (resp.,
dequeue) operation always returns (resp., extracts) the request of
Pi for any future execution.

Consider after the priority of the request ofPi becomes the
highest. Then, no moretoken and subtoken message is issued.
Since each process in its critical section eventually exits, the value
of gSize eventually becomes zero by InvB (2) and InvF (19).

• Case 1, the value ofgSize becomes zero when the request
is in reqQ and the priority of the request is the highest:
The value ofgSize is decremented at lines 3.3 or 9.1. In any
case, procedurehandlePendingRequests is invoked in which
Pi is granted.

• Case 2, otherwise, i.e., the value ofgSize is zero when the
request is enqueued intoreqQ with the highest priority:
The request is enqueued intoreqQ at lines 2.4, 5.11 or 8.4.
In any case, procedurehandlePendingRequests is invoked in
which Pi is granted.

Therefore, in any case, the request ofPi is eventually granted.
Next, we consider a case that the request ofPi is never

enqueued intoreqQ. There are three cases whenPi makes a
request, i.e., whenPi invokesrequestEvent handler.

• Case A1, toki 6= ⊥ (line 2.2): The request is always
enqueued in the main-token (line 2.4).

• Case A2,toki = ⊥ and holderi 6= ⊥ (line 2.6): Pi sends a
request message directly toPk, wherePk = holderi.
We claim thattokk 6= ⊥ holds when therequest message
arrives atPk. By InvI (32) and holderi = Pk, we have
Racquired,k,i − Rleave,k,i = 1. Starting from this formula,
by InvI (31), we have

Racquired,k,i − Rleave,k,i

= Racquired,k,i − Sack,i,k

= (Sacquired,k,i − Cacquired,k,i) − (Cack,i,k + Rack,i,k)

= Sacquired,k,i − Rack,i,k − Cack,i,k − Cacquired,k,i

= 1.

Because0 ≤ Sacquired,k,i − Rack,i,k ≤ 1 by InvH (27), we
must haveSacquired,k,i − Rack,i,k = 1 and Cacquired,k,i =

Cack,i,k = 0.
– In caseSacquired,k,i − Sleave,k,i = 0: SinceSleave,k,i −

Rack,i,k = 1 holds,acksk 6= ∅ by InvH (29).
– Otherwise, i.e., in caseSacquired,k,i − Sleave,k,i = 1:

acqsk 6= ∅ by InvH (28).
Thus, in any case, we havetokk 6= ⊥ by InvH (30), and the
claim is shown.
Therefore, the request ofPi is enqueued intoreqQ when the
request message arrives atPk.

• Case A3,toki = ⊥ andholderi = ⊥ (line 2.8): In this case,
Pi sends arequest message for each process in a quorum
qi exceptPi itself (line 2.9), and it enqueues the request into
tmpQi (line 2.11) if Pi ∈ qi.
There are two cases to consider.

– There existsPj ∈ (qi − {Pi}) such thatholderj 6= ⊥
holds whenPj receives therequest message fromPi.
Then, Pj forwards the request toPk, where Pk =

holderj . As claimed in case A2,tokk 6= ⊥ holds when
the request message arrives atPk.

– Otherwise, i.e.,holderj = ⊥ holds for anyPj ∈ (qi −

{Pi}) whenPj receives therequest message fromPi.
Suppose that this condition remains true forever. Then,
by intersection property of coterie and a property of
message delivery in finite time, there is noacquire and
leave messages in transit in the system, i.e.,Cacquired =

Cleave = 0, and holderℓ = ⊥ holds for anyPℓ. By
InvI (32), we haveRacquired,ℓ,i = Rleave,ℓ,i for any Pℓ.
At the same time, by InvI (31) and InvH (27), eventually
we haveSacquired,ℓ,i = Sleave,ℓ,i = Rack,i,ℓ for any Pℓ.
Consider whenSacquired,ℓ,i = Sleave,ℓ,i = Rack,i,ℓ

becomes true for anyPℓ. By InvH (27), the formula
becomes true by receiving anack message atPℓ. By
receiving the message, we haveacqsℓ = acksℓ = ∅ by
InvH (28 and 29). This implies that
∗ acquired messages are sent (line 12.8), or
∗ a token message is sent to other process, sayPk, and

acquired messages are sent on receipt of the message
(line 5.3).

Note thatPk = Pi never holds in case atoken message
is sent, because otherwise, a request item ofPi must be
in reqQ.
Let Pk be a process that sends theacquired messages.
By intersection property of coterie, there existsPj ∈
qi ∩ qk such thatholderj 6= ⊥ eventually becomes true.
Thus, the condition assumed cannot be true forever.



TABLE I

CONSUMED RESOURCE FOR MODEL CHECKING.

Property # states time memory
of model (sec) (Mbyte)

Safety 1.37 × 106 14 418
Liveness 3.46 × 106 168 3103

Then, the request ofPi in tmpQj is forwarded toPk on
receipt ofacquired message (line 7.4), and the request
item is eventually enqueued as claimed in case A2.

Thus, there exists no execution such that a requesting process
Pi never enter its critical section forever.

II. V ERIFICATION BY MODEL CHECKING

We carried out a model checking [1] with model checker SPIN
[2], [3] to verify the proposed algorithm. Because a model check-
ing verifies correctness properties for all asynchronous execution
patterns of a system exhaustively, it is a useful tool for finding a
bug in a concurrent system.

Note that there is an execution such that (1) the value of
timestamp is unbounded, and (2) the value ofCrelease, the number
of release messages in transit, is unbounded. Because a system
to be verified must be finite by limitation of current model
checking technology, in our model, (1) abstraction is introduced
such that timestamps are in a bounded range, and (2) asynchrony
is restricted such thatCrelease is bounded.

We verified the following correctness properties.

• Safety: No two different groups are accessed simultaneously
at any time.

• Liveness: A process that makes a request eventually enters
its critical section.

Model checking is performed for a distributed system with the
following settings.

• The number of processes is 3.
• The number of groups is 3.
• Coterie used is a majority coterieCmaj.
• Each process non-deterministically selects a quorum on

initialization.
• Each process non-deterministically selects a group when it

makes a request.
• Priority scheme of the queue of the main-token is FCFS.

Our computing environment is as follows.

• IBM IntelliStation A Pro with dual Opteron 245 (2.8GHz
clock) and 10G byte memory

• RedHat Enterprise Linux WS4 for AMD64/EM64T
• Model checker: SPIN version 4.2.5
• C compiler: GCC version 3.4.2

Our algorithm is successfully verified by model checker, and
resource consumed for verification is shown in Table I.

REFERENCES

[1] Edmund M. Clarke, Jr., Orna Grumberg, and Dron A. Peled,Model
Checking, The MIT Press, 1999.

[2] Gerard J. Holzmann, “The model checker Spin,”IEEE Transactions on
Software Engineering, vol. 23, no. 5, pp. 279–295, May 1997.

[3] Gerard J. Holzmann,The SPIN Model Checker, Addison Wesley, 2003.


