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Abstract

The distributed k-mutual exclusion problem is the problem of guaranteeing

that at most k processes can enter a critical section at a time in a distributed

system. The distributed 1-mutual exclusion problem is one of fundamental

distributed problems in distributed systems and many algorithms for solving

the problem have been proposed. In this paper, we introduce the k-coterie

as an extension of the coterie used to solve the distributed 1-mutual exclusion

problem, and propose a distributed k-mutual exclusion algorithm based on the

k-coterie. The algorithm we propose and an algorithm proposed by Raymond

[1] are compared by experiments using workstations connected by Ethernet.

Since the fault tolerance is a very important issue in distributed systems, we

introduce a measure called (k, r)-availability, which is a probability that at least

r processes can enter a critical section at a time. And then, we investigate a

necessary and a sufficient conditions that a class of k-coteries, k-majority coterie,

is optimal in terms of the (k, r)-availability.
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1 Introduction

In this paper, we consider the distributed k-mutual exclusion problem. The

distributed k-mutual exclusion problem is the problem of guaranteeing that at

most k processes can enter a critical section at a time in a distributed system.

For instance, consider a distributed database. The distributed database

system consists of some computers on which copies of data are held. The reason

why more than one computers have copies of data is to increase the availability of

the database. Even if some computers fail and stop, other alive computers may

have copies of data and users can read and update the database. Therefore, in

general, distributed databases can be considered more fault tolerant than usual

databases developed on a computer. This is one of the motivations to introduce

distributed systems.

In the distributed system, to update a record of the database, a user must

lock the record to guarantee that other users are not updating the same record.

Thus, in this sense, we call a fragment of program which updates the data

critical section and we say that a process is in a critical section if it is executing

a code in a critical section. And we are required to solve the mutual exclusion

problem. In this example, the number of processes in the distributed system

which is in a critical section is at most one at a time.

The distributed 1-mutual exclusion problem is one of fundamental distri-

buted problems and many algorithms that solve the problem have been pro-

posed. Lamport proposed a distributed mutual exclusion algorithm in [2]. In

his algorithm, a process which enters a critical section must get permissions

from all the processes. So, this algorithm is based on ‘unanimous’ consensus

scheme. But because if a process stops by failure then other alive processes

can’t enter a critical section, it is not considered as a good algorithm from the

view point of fault tolerance. Thomas proposed ‘majority’ consensus algorithm

to guarantee mutual exclusion [3]. A process which enters a critical section must

get permissions from a majority of all processes. These two schemes are rather

simple; other schemes to solve the problem proposed are:

1



1. The weighted voting scheme

Each process has a weighted vote. To enter a critical section, a process

ought to collect votes from processes so that the sum of the weights of

votes it gets exceeds a pre-specified threshold.

2. The token scheme

There exists a (virtual) token in a system. A process which receives the

token, sends it to the next process so that it rounds among the processes.

The token is regarded as the privilege, i.e., a process which has the token

has the privilege to enter a critical section. Since there exists only one

token, 1-mutual exclusion is guaranteed.

3. The coterie scheme

A coterie is a set of groups of processes such that any two groups have

non-empty intersection. Such groups of processes are called quorums. A

process has to get permissions from all processes in a quorum of the coterie

to enter a critical section and each process does not give permission to

more than one process at a time. Since any two quorums have non-empty

intersection, more than one process can’t enter a critical section at any

given time.

4. The primary site scheme

This is a centralized scheme: a process which acts as the 1-mutual exclu-

sion server of a system is a priori selected and a process which enters a

critical section sends a mutual exclusion request to the server. The server

decides locally the order of entering the critical section.

Note that the coterie scheme is a generalization of the weighted voting one.

To see this, let U = {x1, x2, .., xn} be set of processes, v(xi) be the weighted

votes of xi, and θ be a threshold. Consider a set of subsets of processes C =

{Q1, Q2, ..., Qm} (Qi ⊆ U) such that
∑

xj∈Qi
v(xj) ≥ θ iff Qi ∈ C. Then C is a

coterie.

The Availability of a coterie is the probability that at least one process
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can enter a critical section. Barbara and Garcia-Molina [4] proved that the

availability of the majority coterie is the largest among all coteries if p > 0.5

under assumptions that (1) the network topology is a complete graph, (2) each

communication link is error-free, and (3) the aliveness of each process is the

same probability p. Since the primary site scheme is a special case of the coterie

scheme1, truly distributed systems are more fault tolerant than single machine

systems, provided that p > 0.5.

We consider a generalization of the mutual exclusion problem in such a way

that k processes can enter a critical section at a time. We call this problem the

distributed k-mutual exclusion problem. Thus, the mutual exclusion problem is

that mutual exclusion problem. We consider the following schemes to solve the

distributed k-mutual exclusion problem.

1. The k 1-mutual exclusions scheme

This scheme uses k 1-mutual exclusions for k-mutual exclusion. A process

which enters a critical section must select one of entrances.

2. The k tokens scheme

Make k privilege tokens in a system. A process which have a token can

enter a critical section. Since there exist k tokens, at most k processes can

enter a critical section at a time.

3. The primary site scheme

A process is selected as the k-mutual exclusion server of a system. Each

process sends a request message to the server to enter a critical section.

The server process permits at most k processes to enter a critical section

at a time.

4. The k primary sites scheme

k processes are selected as mutual exclusion servers and each server acts

1Let C = {{x}} where x is a process. Then, C is a coterie. We call such a coterie C a
singleton coterie. The primary site scheme can be considered as the coterie scheme when a
singleton coterie is used.
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as a 1-mutual exclusion server. To enter a critical section, a process ought

to select a server among the k servers.

5. The k-coterie scheme

We propose a new concept k-coterie for solving distributed k-mutual exclu-

sion problem. The k-coterie is an extension of the coterie such that there

exist non-intersecting k quorums but there does not exist non-intersecting

k + 1 quorums. Since there exists k non-intersecting quorums, at most k

processes can enter a critical section at a time. Its formal definition will

be given in the next section.

The first scheme can make use of the techniques we have developed for the

coterie scheme. This scheme is simple but may cause a long delay to enter a

critical section. That is, there is a case in which a process wishing to enter

a critical section selects a busy entrance and waits its turn for a long time.

Althogh, the process may be able to enter a critical section immediately by

choosing another entrance. Therefore, the first scheme is inadequate.

Consider the second scheme. One of the possible solutions is as follows: make

k tokens in a system and let them round among the processors forming a logical

ring. A process which wants to enter a critical section waits for an arrival of a

token. Then it enters a critical section. When it exits from the critical section,

it sends the token to the next process in the ring. In this solution, entrances

of a critical section are identical. But even if no processes are requesting to

enter a critical section, tokens must be continued rounding, i.e., processes must

continue receiving and sending tokens. This is undesirable.

The third scheme is trivial. This scheme is a special case of 1-coterie. Let

p be the aliveness of processes, then it is easy to see that the availability of a

coterie which represents this scheme is p.

The fourth scheme is a special case of the fifth scheme, the k-coterie scheme.

Therefore, in this paper, we consider the k-coterie scheme to solve the distri-

buted k-mutual exclusion problem.

In section 2, terms and concepts which are used in this paper are defined.
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In section 3, we propose a k-coterie based distributed k-mutual exclusion al-

gorithm, and the correctness of the algorithm is shown. Raymond proposed

a distributed k-mutual exclusion algorithm in [1] (it does not based on the k-

coterie). The aim of section 4 is to show the advantages of our algorithm by

an experiment comparing with the algorithm by Raymond. The experiment is

done by using workstations connected by a local area network. In section 5, a

goodness measure of the k-coterie, (k, r)-availability, which is an extension of

the availability is introduced. And then, we investigate a necessary and a suf-

ficient conditions for a class of k-coteries, the k-majority coterie, to be optimal

in the sense of the (k, r)-availability. In section 6, we conclude this thesis by

summarizing the results obtained and propose future tasks remained open.

2 Preliminary

In this section, terms and concepts which will be used in this paper are prepared.

2.1 A Model of Distributed Systems

Let us begin with the definition of a distributed system which is assumed in

this paper. A distributed system consists of n processes and communication

links between processes. (A process is an abstraction of a computer.)

Each process executes the same program, but has unique process identifier

(process ID). Without loss of generality, we assume that a process ID is a positive

integer. Processing speed of processes may be different. Some processes may

execute a program fast and others may do really slow; processing speed of

processes may change during the execution of a program. But it is guaranteed

that a process can execute its next instruction within a finite time unless it has

been terminated.

Each process has its own local clock. Each local clock may indicate different

time, and no processes can tell the global time2. Therefore, to synchronize other

processes, processes can’t make use of their local clocks.

2The definition of the distributed k-mutual exclusion problem requires the existence of the
global time.
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When a distributed system is initiated, a process knows about its process ID,

the number of links, and the adjacent processes. Since there is no centralized

control to solve a problem, processes must collect enough information from other

processes through communication links.

We assume that the network topology is a complete graph and links are error-

free. The only mechanism provided in the system for information exchange

between processes is the message passing, i.e., processes do not have shared

memory. The message passing is done by the point-to-point communication

style. Communication links are bidirectional. If there exists a link between

processes x and y, then x can send messages to y and vice versa. Each process

has a message queue of infinite length, which stores messages arrived to it.

Operations provided for the message passing are as follows.

• The SEND operation

SEND is used to send a message. To send a message, a destination process

must be specified. Since the point-to-point communication is assumed,

there must be a link between the source process which issues the SEND

and the destination process. Messages sent by a process are eventually

put into the mseesage queue of the destination process in a finite time.

• The RECEIVE operation

As described, each process maintains a message queue. By issuing RE-

CEIVE, the message which is the first item in the queue is retrieved. If the

queue is empty, a special value which indicates that the queue is empty is

returned.

The order of messages is kept unchanged during the deliverly. That is, when

process x sends messages M1 and M2 in this order to y, y receives M1 and M2 in

the same order. It is guaranteed that each message is delivered in a finite time.

But the message delivery delay is unpredictable; the delay may vary during the

execution of a program.
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2.2 k-coterie

We show the formal definition of the k-coterie. Let U = {x1, ..., xn} be the set

of processes, where n is the number of processes.

Definition 1 (k-coterie) A non-empty set C of non-empty subsets Q of U is

called a k-coterie if and only if all of the following three conditions hold:

1. Non-intersection Property:

For any l (1 ≤ l ≤ k− 1) and for any elements Q1, ..., Ql ∈ C, there exists

an element Q ∈ C such that Q ∩ Qi = ∅ for 1 ≤ i ≤ l.

2. Intersection Property:

There are no k + 1 elements Q1, ..., Qk+1 ∈ C such that Qi ∩ Qj = ∅ for

all 1 ≤ i, j ≤ k + 1.

3. Minimality Property:

For any two distinct elements Qi and Qj in C, Qi 6⊆ Qj.

2

Examples of k-coterie are shown below.

• k = 1

C1 = {{1}}

C2 = {{1, 2}, {2, 3}, {3, 1}}

• k = 2

C3 = {{1}, {2}}

C4 = {{1, 2}, {3, 4}, {3, 4}, {4, 1}}

• k = 3

C5 = {{1, 4}, {2, 5}, {3, 6},

{1, 5}, {2, 6}, {3, 4},

{1, 6}, {2, 4}, {3, 5}}
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Note that the 1-coterie is the coterie, and therefore, the k-coterie is an

extension of the coterie. The followings are two simple classes of k-coteries,

the k-majority coterie and the k-singleton coterie.

Definition 2 (k-majority coterie) Let W = d(n + 1)/(k + 1)e, where n is

the number of processes. The set Majk = {Q ⊆ U
∣∣ |Q| = W} is called the

k-majority coterie. Note that Majk is defined when n ≥ k2. 2

Definition 3 (k-singleton coterie) Let Sglk be a set {{v1}, . . . , {vk}}, where

vi ∈ U for i = 1, . . . , k, and vi’s are distinct. Then Sglk is a k-coterie.

2

3 An Algorithm for the Distributed k-Mutual
Exclusion Problem

In this section, we introduce a k-coterie based distributed k-mutual exclusion

algorithm. The basic idea of the algorithm is simple; select a quorum and

get permissions from all processes in the quorum. But it is easy to see that

straightforward implementation of the idea may cause deadlocks. The idea we

propose to avoid deadlocks is to make permissions preemptive.

We consider the distributed k-mutual exclusion problem. A process may

choose a busy quorum when it tries to enter a critical section and is forced

to wait for a long time. The process may be able to enter a critical section

immediately by selecting another quorum. Therefore, retrying is an important

to reduce the delay time to enter a critical section, especially in case that k is

large.

3.1 On Ordering in Distributed Environments

To avoid deadlocks and starvations, the timestamp introduced by Lamport [2]

is used to define the priority among mutual exclusion requests. The timestamp

carried by a message is assumed to have a form (t, x), where t is the logical

time at which the message is issued and x is the process issuing the message.
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Timestamps are orderd naturally as follows: (t, x) < (u, y) iff t < u or t =

u & x < y. If (t, x) < (u, y) then the priority of (t, x) is higher than that of

(u, y).

The logical clock can be implemented as follows. At first, the local clock of

each process is initialized to be 0. If a mutual exclusion request is issued at a

process x, then x increments local clock by 1. Whenever a process x sends a

message to another processes, the current time t (in terms of the local clock)

is attached to the message. When y receives it, then y sets its local clock to

max{t, t′} + 1, where t′ is the current time by y’s local clock.

3.2 The Algorithm

3.2.1 Overview of the Algorithm

An overview of the algorithm is as follows. Let C be a k-coterie. When a

process x want to enter a critical section, x selects a quorum Q ∈ C and sends

a REQUEST message to each process in Q. A process y in the quorum sends a

OK message (i.e., it gives permission) unless it has sent permission to a process

and it has not been returned. If y has sent the permission already, then it

sends a WAIT message to x. The WAIT message means that “I cannot give the

permission immediately”. At this step, y may preempt the permission.

Then x waits for an acknowledge from each process in Q. If all the acknowl-

edgements are OK, then x can enter a critical section. If there contains a WAIT

message in the acknowledgements, then y selects another quorum and sends

REQUEST messages. This is repeated until y can get the permissions from all

processes in a quorum.

3.2.2 Complete Description of the Algorithm

Now, we show a detailed description of the algorithm. Each process x has

local variables K and T . K of x maintains the set of processes from which x

received OK messages, and T of x maintains the set of processes from which x

has received WAIT messages. Later, we will show that the algorithm has the
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following properties: (1) k-mutual exclusion is guaranteed, (2) it is deadlock-

free, and (3) it is starvation free.

• When x wishes to enters a critical section:

Process x selects a quorum Q in C, and sends REQUEST messages to all

processes in Q. Then, x waits for acknowledgements (OK or WAIT) from

all processes in Q. If there exists a process that sent a WAIT message

in the acknowledgements, then x selects another quorum Q′ such that

Q′∩K = ∅ and |Q′−K| ≥ |R−K| for all R ∈ S. And x sends REQUEST

messages to processes in Q′−K, i.e., REQUEST messages are sent out at

most once to each process. This action is repeated until K ⊆ R for some

R ∈ C.

Process x enters a critical section if it gets permissions from all processes

in a quorum R ∈ C.

If x has no quorum to send request messages, then x waits for permissions

from processes to which x sent request message.

• When x exits from a critical section:

Process x sends a RELEASE message to each process in K to return

permissions. And x waits for permissions from all processes in W . When

x receives a OK message from y in W , x immediately sends a RELEASE

message to y.

• When x receives a REQUEST message from y:

If x has not sent permission to any processes, x sends a OK message to

y. If x has sent permission to a process z, x acts as follows. Let (s, y),

(t, z) be timestamps of requests of y, z, resp. If (s, y) > (t, z), then the

priority of z is higher than that of y; x sends a WAIT message to y and

puts the request of y into x’s local priority queue. (The head item of

the queue is a request whose timestamp is the smallest in the queue.) If

(s, y) < (t, z), then priority of y is higher. To avoid deadlock, x try to

preempt permission which is sent to z. But if z is in a critical section, x
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cannot preempt; x sends a QUERY message to z to ask whether x can

preempt the permission or not. If z is not in a critical section, then z

sends a ANSWER RELEASE and returns the permission. Then, x sends

a OK message to y and puts request of z into the queue. If z is in a

critical section, then z sends a ANSWER NO. In this case, x sends a

WAIT message to y and puts the request of y into its queue. (Note that

the permission is returned to x in finite time as z exits from a critical

section in finite time.)

• When x receives a RELEASE message from y:

A permission of x is returned by y. If the queue of x is not empty, then x

extracts the first item (t, z) in the queue and sends OK message to process

z. If queue is empty, then x holds its permission.

• When x receives a QUERY message from y.

If x is not in a critical section, then x returns permission, i.e., x sends

ANSWER RELEASE to y. If x is in a critical section, then x sends

ANSWER NO message to y.

3.3 Correctness Proofs

Theorem 1 The algorithm guarantees k-mutual exclusion.

Proof: Let C be a k-coterie which is used in the algorithm. A process x enters

a critical section if and only if the following condition holds:

∃Q(Q ∈ C)[Q ⊆ K].

(Note that K is the set of processes from which x has received an OK message.)

Each process y sends permission at most one process at a time. Since C is a

k-coterie, the number of processes which hold the above condition is at most k

at a time. Therefore, the number of processes in a critical section is at most k

at any given time. 2

Theorem 2 The algorithm is deadlock free.
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Proof: Assume that a deadlock happens. Consider the directed graph whose

nodes are processes and links are edges defined as follows: there exists an edge

from x to y in the graph if and only if y has the permission of a process z and x

is requesting it, i.e., x is waiting for its release. Since the system is a deadlock

state, there exists a cycle in the graph. Let x0, x1, ..., xm−1 be processes that

forms a cycle such that

x0 → x1 → · · · → xm−1 → x0,

and ti be the priority (the timestamp when a mutual exclusion happened) of

process xi. Note that without loss of generality, we can assume that no process

xi is in a critical section. If such process xi exists, it eventually exits from a

critical section and releases the permissions it keeps and the cycle of the graph

is broken in a finite time.

Each process x preempts its permission having sent to a process y if a new

request whose priority (defined by timestamp) is higher than y’s. Since a cycle

is formed, the permission which is kept by xi+1 mod m is not preempted by xi

for all i. But ti > ti+1 mod m holds for each i, we have t0 > t0; a contradiction.

2

Theorem 3 The algorithm is starvation free.

Proof: Assume that there exists a process x which is starved. Let S be a set

of processes to which x sent request message. Since x is starved, there exists

(1) a process y such that y received a request of x, (2) a process z such that z

enters a critical section infinitely often and receives a permission from y. But

this situation can’t happen. Since the timestamp of z increases when it enters

a critical section and it becomes any large, the timestamp of z becomes larger

than that of x in finite time. Therefore, eventually x can have higher priority

and receives permission from y. 2
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3.4 Discussions

• Message complexity

Let C be a k-coterie used by our algorithm. In the best case, the number of

messages that our algorithm requires per mutual exclusion is 3|Q|, where Q is a

quorum in C. In case that C = Majk, the message complexity is 3d(n+1)/(k+1)e.

But we can find another k-coterie of whose quorum size is small. For instance,

a method to construct a k-coterie whose quorum size is O(
√

n log n) is shown

in [5]. So, the message complexity of ours is smaller than that of Raymond’s.

But, in worst case, our algorithm requires at most 6|N | messages per mutual

exclusion. This case happens when a requesting process fails to preempt every

permissions that a process requested. This seems to be serious problem, but

we can restrict the maximum number of messages by modifying our algorithm.

This modification is discussed below.

• Variation

We describe how to reduce the number of messages in worst case. The algorithm

try to find another quorum if a quorum is busy; this ‘retrying’ causes increase of

messages. Therefore, if retrying is restricted, then the the message complexity

in worst case become smaller. As an extreme case, if we do not retry at all, then

the message complexity in worst case is 6|Q|. But this may causes long delay

time to enter a critical section.

A process x sends ANSWER NO message when x is in a critical section and

receives QUERY message. But this message, ANSWER NO, can be omitted.

This modification decreases the number of messages in worst case; but it may

cause long delay time if a process is in a critical section long time.

4 Experimental Evaluation of Distributed
k-Mutual Exclusion Algorithms

In [6], a distributed k-mutual exclusion algorithm is proposed. The aim of this

section is to show advantages of our algorithm comparing to Raymond’s algo-

rithm by experiment. The experiment is done by using workstations connected
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by a local area network (Ethernet). On each workstation, only one process exe-

cutes a mutual exclusion algorithm; therefore, processes are executed completely

in parallel. Message exchange between processes is implemented by using Inter

Process Communication (IPC) facility.

4.1 Algorithm by Raymond

Now, we give a brief explanation of the distributed k-mutual exclusion algorithm

proposed by Raymond. Her algorithm is a modification of Ricart and Agrawala’s

distributed 1-mutual exclusion algorithm [7]. Raymond’s algorithm also uses the

timestamp to define priority among mutual exclusion requests to avoid deadlock

and starvation.

• When a process enters a critical section.

A process x sends a REQUEST message to all the other process (i.e., n−1

processes). And when x receives n − k REPLY (permission) messages, x

can enter a critical section.

• When a process receives a REQUEST message.

Let x be a process which sent a REQUEST message and y be a process

which received the REQUEST message. If y is not requesting to enter a

critical section nor in a critical section then y sends a REPLY message

to x. Otherwise, if tx > ty, where tx (ty) is a timestamp of x (y), then

y defers sending a REPLY to x until it exits from a critical section. if

tx < ty then y (immediately) sends REPLY message to x.

4.2 A Model of Distributed System

In section 2, we described that the processing speed and speed of time flow of

any two processes are not the same in general. But, to evaluate two algorithms,

we change these assumptions such that (i) processing speed of all processes are

the same, and (ii) all processes have the same time flow, i.e., their clock are

identical.
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4.3 A Model of Behavior of Processes

Each process has four states and transits state to state on some events.

• The Normal State

In this state, a process is passive, i.e., it may receive a message from other

process, and may sends response. At every unit time, with probability

p (0 ≤ p ≤ 1), a request to enter a critical section happens at the process.

If a request happens, it changes its state to the Requesting State. If not,

it stays in the same state.

• The Requesting State

In this state, a process is sending request messages to processes or waiting

to get permissions from processes. If a condition to proceed to a critical

section holds, then it enters a critical section and changes its state to the

Critical Section State.

• The Critical Section State

In this state, a process is in a critical section. After having QCS unit time

passed since it entered a critical section, it exits from a critical section and

changes its state to the Exiting State.

• The Exiting State

In this state, a process is releasing permissions which is gotten to enter a

critical section. When it finishes releasing all permissions, it changes its

state to the Normal State.

4.4 The Evaluation System

Here, we describe the simulation system to evaluate two algorithms. The simu-

lation is done by using workstations which are connected by local area network

(Ethernet). Workstations on which UNIX operation system are available are

used and the programming language C is used to implement mutual exclusion

algorithms. On each workstation, only one process which executes a distributed
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mutual exclusion algorithm is executed. Therefore, n workstations are neces-

sary to simulate a distributed system of n processes. Message exchange between

processes is done by Inter Process Communication (IPC) facility.

We are assuming that the speed of time flow at each process is the same.

To implement such situation, the simplest solution is letting the time flow of

a process be the same as (or proportional to) that of real time. We let the

time unit at processes be TQ second. (In our experiment, one unit of time,

TQ is set to be 1 second.) Therefore, the speed of time flow at a process does

not depend on the processing speed of workstation, i.e., the same time flow is

guaranteed. Each workstation has real time clock; therefore this idea is be able

to be implemented easily. Since 1 second is enough long time for CPUs, the

local computation time at processes is negligibly short.

Since stream communication is synchronous, if two processes try to send

message at the same time then these processes fail into deadlock state. (A

process waits for message reception of the other process, and the other process

waits for message reception of another one.) Therefore, message passing must

be asynchronous. So, message exchange between processes is implemented by

using (asynchronous) datagram communication.

4.5 Results and Discussions

Conditions of the experiment are as follows:

• the unit time TQ is 1 second,

• TCS , the time that a process is in a critical section, is 1 unit time,

• a k-coterie used by our algorithm is the k-majority coterie, and

• the experiment is done for 500 unit time.

The experiment is done for:

• k = 2, n = 5, 8, 11,

• k = 3, n = 7, and
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• k = 4, n = 9.

For each experiment, p, the probability of mutual exclusion request, is varied

from 0.01 to 1.0. Workstations used for the experiment are 7 AV-300’s (Nippon

Data General) and 4 DS-7400’s (Nippon Data General) on which the DG/UX

operating system (version 4.32 for AV300, version 4.02 for DS7400) is available3.

The experiment system is written in the language C. The size of it is about 4000

lines (600 lines for our algorithm, 300 lines for Raymond’s algorithm, 3000 lines

for common subroutines).

Under condition as described above, following two are counted

• the number of messages that each process sends, and

• the number of times that each process enters a critical section.

From these two data, the average of the number of messages which is nec-

essary to enter a critical section is computed. Let this value be µ, which is

computed by the following formula.

µ =

∑
1≤i≤n

Mi∑
1≤i≤n

Ci

,

where Mi is the number of messages that process i sends during the experiment

and Ci be the number of times that process i enters a critical section during the

experiment (1 ≤ i ≤ n). 4

Results of the experiment are shown in figure 1–5.

In case that p is small (for instance, in case of k = 4, n = 9; see figure

5), µ, the number of messages which our algorithm requires to enter a critical

section, is smaller than that of Raymond’s algorithm, as being expected. We

can see from figures that µ gradually increases with the increase of p if p is

small (for instance, p < 0.2 in case of k = 4, n = 9). But when p become

larger, µ suddenly increases and when p comes near to 1.0, µ saturates. This

3the DG/UX operating system is a flavor of the UNIX operating system.
4For convenience, let process ID be an integer between 1 and n.
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Figure 1: The average number of messages (k = 2, n = 5).

18



Raymond’s Algorithm
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Figure 2: The average number of messages (k = 2, n = 8).
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Figure 3: The average number of messages (k = 2, n = 11).
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Figure 4: The average number of messages (k = 3, n = 7).
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observation is described as follows. When p is enough small, mutual exclusion

requests do not collide often with. In addition to it, even if a process fails to

get permissions from a quorum, the probability that it gets permissions from a

next quorum is large. Therefore, the number of additional messages is rather

small. But p increases, collisions often happen and the probability that processes

choose another coterie but fails to get permissions become large; this cause a

sudden increase of µ.

Consider the case that k is fixed but n increases (see figures 1, 2, and 3). in

this case, the increase of n causes the increase of the probability of collision of

mutual exclusion requests. Therefore, µ increases.

The larger k becomes (for instance, compare cases k = 2, n = 5 and k =

4, n = 9; see figure 1 and figure 5), the smaller µ becomes (if p is small). This

is why that the size of quorum become smaller if k become larger. Note that

the k-coterie is used in this experiment. If we use other coteries whose quorum

size is small, µ becomes smaller.

So, we can expect our algorithm requires less messages than Raymond’s

algorithm does. As discussed in previous section, evenif p is large, the µ can

be limited by modifyng our algorithm such that the algorithm does not retry

requesting so many quorums. Therefore, we can conclude that our algorithm is

better than Raymond’s algorithm.

5 Availability of k-Coterie

Consider a distributed system in whose processes may fail. This is often happen

in real distributed systems. Under such circumstance, it is important to consider

the fault tolerance of the system. In this section, the availability of k-coterie is

investigated. The availability is one of criteria of distributed system, which is a

probability that a system is operational. As a metric of goodness of k-coterie,

the (k, r)-availability is introduced, which is an extension of the availability ([4]).

We show a necessary and a sufficient conditions such that the k-majority coterie

is optimal the k-coterie in terms of the (k, r)-availability.
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5.1 Preliminary

Here, we define concepts which is necessary in this section.

Definition 4 ((k, r)-characteristic function) Let C be a k-coterie over U ,

and r (1 ≤ r ≤ k) be an integer. The (k, r)-characteristic function FC,k,r of C

is a function from 2U to {0, 1} defined as follows:

For each S ⊆ U , FC,k,r(S) = 1 if and only if there exist r quorums Q1, ..., Qr ∈

C satisfying both of the following two conditions;

Qi ∩ Qj = ∅ for 1 ≤ i, j ≤ r, i 6= j, and

for all i, Qi ⊆ S.

2

Definition 5 ((k, r)-availability) Let C be a k-coterie, and r (1 ≤ r ≤ k) be

an integer. The (k, r)-availability Rk,r(C) of C is the probability that at least r

processes can enter a critical section.

More formally, let G = (V,E) be the topology of the distributed system un-

der consideration. Let V ′ and E′ be, respectively, the sets of processes and

links in operation, and by Pr(V ′, E′), denote the probability that this situation

occurs. The topology of the distributed system in operation is then the graph

G′ = (V ′, (V ′ × V ′) ∩ E′). We say a quorum Q ∈ C is available with respect to

G′ if Q is a subset of the vertex set of a connected component of G′. If there

are r distinct available quorums Q1, . . . , Qr ∈ C with respect to G′ such that

Qi ∩ Qj = ∅ for 1 ≤ i, j ≤ r, i 6= j, we say that G′ is r-available. Then the

(k, r)-availability of C on G is defined as follows:

RG,k,r(C) =
∑

G′is r-available

Pr(V ′, E′)

The (k, r)-availability depends on G. But, since throughout this paper, we

assume that G is complete, we omit G from RG,k,r. 2
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Note that the (1,1)-availability coincides with the availability.

Let S be the set of processes being in operation. Then, since the topology of

the distributed system is a complete graph, FC,k,r(S) = 1 if and only if at least

r processes can enter a critical section (i.e., G′ = (S, (S×S)∩E) is r-available).

On the other hand, the probability that the set of processes being in operation

is exactly S is p|S|(1 − p)n−|S|. Thus, the (k, r)-availability of a coterie C can

be calculated using the following formula:

Rk,r(C) =
∑
S⊆U

FC,k,r(S)p|S|(1 − p)n−|S|.

Let C be a k-coterie, and r (1 ≤ r ≤ k) be an integer. Now, we construct a

new k′-coterie C′ as follows:

First, let

C′ = {Q
∣∣ Q = Q1 ∪ · · · ∪ Qr, Qi ∈ C for 1 ≤ i ≤ r,

and Qi ∩ Qj = ∅ for 1 ≤ i, j ≤ r, i 6= j}.

Next, from C′, we remove all elements Q such that Q′ ⊆ Q for some Q′ ∈ C′,

in order for the resultant C′ satisfying the minimality property. Then C′ has the

following properties.

Property 1 C′ is a bk
r c-coterie. 2

Property 2 Let k′ = bk
r c. Then,

FC,k,r = FC′,k′,1.

Hence,

Rk,r(C) = Rk′,1(C′).

2

We call C′ the r-contracted coterie of C.
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5.2 Availability of k-Majority Coterie

We investigate the k-majority coterie Majk in terms of the (k, r)-availability.

Theorem 4 Let n be the number of processes, k be an integer such that (n+1)

is a multiple of (k + 1), and r (1 ≤ r ≤ k) be an integer. Then, there is a

constant pu(n, k, r) such that for any process reliability p (pu(n, k, r) ≤ p ≤ 1),

Majk achieves the maximum (k, r)-availability. Hence, Majk is the best k-coterie

in terms of the (k, r)-availability if p ≥ pu(n, k, r), where

pu(n, k, r) =
c(n, k, r)

c(n, k, r) + 1
,

and

c(n, k, r) =
rW−1∑

i=0

(
n

i

)
.

Proof: Let C ( 6= Majk) be any k-coterie. We show that Rk,r(Majk) ≥ Rk,r(C)

for any p ≥ pu(n, k, r). Let W = (n+1)/(k+1) (i.e., W is the size of each quorum

in Majk ). If each quorum Q in C has size at least W , then Rk,r(Majk) ≥ Rk,r(C)

clearly, since FMajk,k,r ≥ FC,k,r. Therefore, in C, there exists a quorum Q0 with

size less than W .

First, we show that for some S (⊆ U) with size rW , FC,k,r(S) = 0 holds.

Suppose that for each S with size rW , FC,k,r(S) = 1 holds. Let U1 = U − Q0.

Since |U1| ≥ n−W +1, |U1| ≥ kW . Arbitrarily choose a set S (⊆ U1) with size

rW . Since FC,k,r(S) = 1, there is a quorum Q1 (⊆ S) in C whose size is at most

W . Then we repeat this procedure for U2 = U1 − Q1. In this way, we repeat

this procedure (k − r) times and can find a sequence of quorums Q0, ..., Qk−r

in C. Clearly, Qi ∩ Qj = ∅ for 0 ≤ i, j ≤ (k − r), i 6= j. Since |Qi| ≤ W

for 0 ≤ i ≤ (k − r), |Uk−r+1| ≥ rW . Thus, in Uk−r+1, there exist r quorums

Qk−r+1, ..., Qk(∈ C), such that Qi ∩ Qj = ∅ for k − r + 1 ≤ i, j ≤ k, i 6= j. It is

a contradiction, since Qi ∩ Qj = ∅ for 0 ≤ i, j ≤ k, i 6= j.

Then, there exists a set S (⊆ U) with size rW such that FC,k,r(S) = 0. Let

∆ = Rk,r(Majk) − Rk,r(C). Since FMajk,k,r(S′) = 1 for every S′ with size rW ,

by definition,
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k, W, n r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

k = 1, W = 5, n = 9 0.9961089 — — — — —
k = 2, W = 5, n = 14 0.9993207 0.9999329 — — — —
k = 3, W = 4, n = 15 0.9982669 0.9999390 0.9999689 — — —
k = 4, W = 3, n = 14 0.9906542 0.9997121 0.9999226 0.9999386 — —
k = 5, W = 3, n = 17 0.9935484 0.9998937 0.9999847 0.9999918 0.9999924 —
k = 6, W = 3, n = 20 0.9952830 0.9999539 0.9999962 0.9999987 0.9999990 0.9999990

Table 1: pu(n, r, k) for some n (k = 1, ..., 6, r = 1, ..., k).

∆ ≥ p|S|(1 − p)n−|S| −
rW−1∑

i=0

(
n

i

)
pi(1 − p)n−i

≥ prW (1 − p)n−rW

−c(n, k, r)prW−1(1 − p)n−rW+1,

where

c(n, k, r) =
rW−1∑

i=0

(
n

i

)
.

It is easy to show that ∆ ≥ 0 if

p ≥ c(n, k, r)
1 + c(n, k, r)

= pu(n, k, r).

2

Since c(n, k, r) < c(n, k, r + 1), the following corollary holds.

Corollary 1 If p ≥ pu(n, k, k) then Majk is optimal in the sense of (k, r)-

availability for all 1 ≤ r ≤ k. 2

Table 1 shows pu(n, k, r) (k = 1, . . . , 6 and r = 1, . . . , k) for some n.

Theorem 5 For any non-negative integer m, (2m+1)-majority coterie Maj2m+1

achieves the maximum (2m+1,m+1)-availability, if the process reliability p ≥ 1
2

and (n + 1) is a multiple of 2(m + 1).
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Proof: Let C ( 6= Maj2m+1) be any (2m+1)-coterie, and assume that C achieves

a better (2m + 1,m + 1)-availability than Maj2m+1 for some p ≥ 1
2 . By C′, we

denote the (m+1)-contracted coterie of C. Then by Property 1, C′ is a 1-coterie.

By definition of Majk , the (m+1)-contracted coterie of Maj2m+1 is 1-majority

coterie Maj1 , since (n+1) is a multiple of 2(m+1). Since Maj1 (i.e., majority

coterie) achieves the maximum (1, 1)-availability (i.e., availability) for all p ≥ 1
2

(Theorem 3.1 of [4]), the (1, 1)-availability of Maj1 is not smaller than that of

C′, a contradiction by Property 2. 2

So far, we have derived a sufficient condition for k-majority coterie to be

optimal in terms of the process reliability p. Now, we proceed to a necessary

condition. We first present how to construct a new k-coterie C from k-majority

coterie Majk , and then by comparing their (k, r)-availabilities, derive the nec-

essary condition.

Arbitrarily choose n, k, and r (such that (n + 1) is a multiple of (k + 1),

and fix them. We construct a k-coterie C from Majk as follows: Let Q0 be any

quorum in Majk, and u0 be any element in Q0. Let Q1 = Q0 − {u0}. Then,

C = Majk + {Q1} − {Q ∈ Majk
∣∣ Q = Q1 ∪ {u}, u ∈ U − Q1}

−{Q ∈ Majk
∣∣ Q ∩ Q0 = {u0}}.

We compare their availabilities. Observe that FC,k,r(S) = 1 for all S ⊆ U

with size at least rW +1, and that FC,k,r(S) = 0 for all S ⊆ U with size at most

rW − 2, where W = (n + 1)/(k + 1) (i.e., the size of quorum in Majk ). On the

other hand, by definition, FMajk,k,r(S) = 1 if and only if |S| ≥ rW . Define Γ+

and Γ− as follows:

Γ+ = {S ⊆ U
∣∣ FMajk,k,r(S) = 0 & FC,k,r(S) = 1}

Γ− = {S ⊆ U
∣∣ FMajk,k,r(S) = 1 & FC,k,r(S) = 0}
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Note that by the observations, |S| = rW − 1 if S ∈ Γ+, and |S| = rW if

S ∈ Γ−. Since Q1 is the only quorum with size W − 1 in C, S ∈ Γ+ if and only

if Q1 ⊆ S, u0 6∈ S, and |S| = rW − 1, by definition of C. Therefore,

|Γ+| =
(

n − W

rW − 1 − (W − 1)

)
=

(
kW − 1

(r − 1)W

)
.

Next, we show that S ∈ Γ− if and only if Q1 ∩S = ∅, u0 ∈ S and |S| = rW .

To show if part, assume that FC,k,r(S) = 1 holds (since FMajk,k,r(S) = 1).

Since u0 ∈ S, there is a quorum Q containing u0 in C, a contradiction since

Q∩Q0 = {u0}. As for only if part, if either u0 6∈ S or Q1 ∩S 6= ∅, then one can

easily find r quorums G1, ..., Gr in C such that S =
∪r

i=1 Gi and Gi ∩ Gj = ∅

for 1 ≤ i, j ≤ r, i 6= j. Therefore,

|Γ−| =
(

n − W

rW − 1

)
=

(
kW − 1
rW − 1

)
.

By definition,

∆ = Rk,r(C) − Rk,r(Majk)

= |Γ+|prW−1(1 − p)n−(rW−1) − |Γ−|prW (1 − p)n−rW

= prW−1(1 − p)n−rW

×
{(

kW − 1
(r − 1)W

)
(1 − p) −

(
kW − 1
rW − 1

)
p

}
.

Therefore, ∆ > 0 if and only if

p >

(
kW−1

(r−1)W

)(
kW−1

(r−1)W

)
+

(
kW−1
rW−1

) .

Theorem 6 Let n be the number of processes, k be an integer such that (n+1)

is a multiple of (k + 1), and r (1 ≤ r ≤ k) be an integer. Then, there is a
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k, W, n r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

k = 1, W = 5, n = 9 0.5000000 — — — — —
k = 2, W = 5, n = 14 0.0078740 0.9921260 — — — —
k = 3, W = 4, n = 15 0.0060241 0.5000000 0.9939759 — — —
k = 4, W = 3, n = 14 0.0178571 0.2631579 0.7368421 0.9821429 — —
k = 5, W = 3, n = 17 0.0108696 0.1538462 0.5000000 0.9891304 0.9891304 —
k = 6, W = 3, n = 20 0.0072993 0.0099010 0.3373494 0.6626506 0.9009901 0.9927007

Table 2: pl(n, r, k) for some n (k = 1, ..., 6, r = 1, ..., k).

constant pl(n, k, r) such that for any process reliability p (0 < p < pl(n, k, r)),

Majk does not achieve the maximum (k, r)-availability.Hence, Majk is not the

best k-coterie in terms of (k, r)-availability if 0 < p < pl(n, k, r), where

pl =

(
kW−1

(r−1)W

)(
kW−1

(r−1)W

)
+

(
kW−1
rW−1

) .

2

Table 2 shows pl(n, k, r) (k = 1, . . . , 6, r = 1, . . . , k) for some n.

5.3 Availability of k-Singleton Coterie

This section shows a sufficient condition for the k-singleton coterie to be optimal

in terms of the process reliability p.

Theorem 7 Let n be the number of processes, and k (≤ n) and r (1 ≤ r ≤ k) be

integers. Then, there exists a constant q(n, k, r) > 0 such that (any) k-singleton

coterie Sglk is optimal for all process reliability p (0 ≤ p ≤ q(n, k, r)). Hence,

Sglk is the best k-coterie in the sense of (k, r)-availability if p ≤ q(n, k, r).

Proof: Let C be any k-coterie which is not a k-singleton coterie. We show that

there exists a constant t > 0 such that for all process reliability p (0 ≤ p ≤ t),

p
k, r 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

4, 1 Majk 0.0000 0.1584 0.5519 0.8392 0.9602 0.9935 0.9994 1.0000 1.0000 1.0000 1.0000
Sglk 0.0000 0.3439 0.5904 0.7599 0.8704 0.9375 0.9744 0.9919 0.9984 0.9999 1.0000

4, 2 Majk 0.0000 0.0015 0.0439 0.2195 0.5141 0.7880 0.9417 0.9917 0.9996 1.0000 1.0000
Sglk 0.0000 0.0523 0.1808 0.3483 0.5248 0.6875 0.8208 0.9163 0.9728 0.9963 1.0000

4, 3 Majk 0.0000 0.0000 0.0004 0.0083 0.0583 0.2120 0.3373 0.6405 0.8883 0.9985 1.0000
Sglk 0.0000 0.0037 0.0272 0.0837 0.1792 0.3125 0.4752 0.6517 0.8192 0.9477 1.0000

4, 4 Majk 0.0000 0.0000 0.0000 0.0000 0.0006 0.0065 0.0398 0.1608 0.4481 0.8416 1.0000
Sglk 0.0000 0.0001 0.0016 0.0081 0.0256 0.0625 0.1296 0.2401 0.3164 0.5220 1.0000

Table 3: (k, r)-availabilities of Majk and Sglk (k = 4, n = 14).
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the (k, r)-availability of Sglk is larger than or equal to that of C. The proof here

is similar to that of Theorem 1.

Let ∆ = Rk,r(Sglk)−Rk,r(C). By definition, for all S with size at most r−1,

FSglk,k,r(S) = FC,k,r(S) = 0. Define

m0 =
∣∣∣{S ∣∣ FSglk,k,r(S) = 1, |S| = r}

∣∣∣, and

m1 =
∣∣∣{S ∣∣ FC,k,r(S) = 1, |S| = r}

∣∣∣.
Then, clearly, m0 > m1, since C is not a k-singleton coterie. Therefore, by

definition,

∆ ≥ pr(1 − p)n−r −
n∑

i=r+1

(
n

i

)
pi(1 − p)n−i.

It is easy to see that there is a constant t such that ∆ ≥ 0 for all p (0 ≤ p ≤ t).

Since the number of different k-coteries are finite, the theorem follows. 2

6 Conclusion

In this paper, we ingestigated the distributed k-mutual exclusion problem. To

solve the problem, we introduced the k-coterie. An algorithm which is based on

the k-coterie was proposed and its correctness (k-mutual exclusion, deadlock-

free, starvation-free) was shown. An experiment was done in distributed en-

vironment to show the advantages of our algorithm by compareing ours with

Raymond’s algorithm. We concluded that ours is more efficient. From a view

point of reliability of distributed systems, a necessary and a sufficient conditions

such that the k-majority coterie is optomal in the sense of (k, r)-availability.

The scheme we discussed in this paper, the k-coterie scheme, does not pro-

vide full identical entrances of a critical section. The reason is that a process

which is failed to get permissions from all processes in a quorum must find other

quorum; this may correspond to finding another entrance, in a sense. (But en-

trances are not fully different.) So, it is an interesting problem finding a new

scheme which provides fully identical entrances of a critical section. That is, a
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process which wishes to enter a critical section does not have to retry. This is

left as a future task.
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