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The elastic-input neuro tagger and hybrid tagger, combined with a neural network and Brill's error-driven learning, have already been proposed for the purpose of constructing a practical tagger using as little training data as possible. When a small Thai corpus is used for training, these taggers have tagging accuracies of 94.4% and 95.5% (accounting only for the ambiguous words in terms of the part of speech), respectively. In this study, in order to construct more accurate taggers, we developed new tagging methods using three different machine learning methods: the decision list, maximum entropy, and support vector machine methods. We then performed tagging experiments using these methods. Our results showed that the support vector machine method has the best precision (96.1%), and that it is capable of improving the accuracy of tagging in the Thai language. The improvement of the accuracy was also confirmed by using a statistical test (a sign test). Finally, we examined theoretically all these methods in an effort to determine how the improvements had been achieved. The reason for the improvements was that we had used word information, which is useful for tagging, and a support vector machine that performs well.

Categories and Subject Descriptors: I.2.7 [Computing Methodologies]: Artificial Intelligence - Natural Language Processing; Language parsing and understanding
General Terms: Machine learning, POS tagging
Additional Key Words and Phrases: Support vector machine, Maximum entropy method, Decision list method, Lexical information
________________________________________________________________________

1. INTRODUCTION 

The elastic-input neuro tagger and hybrid tagger, combined with a neural network and Brill's error-driven learning, have already been proposed for the purpose of constructing a practical tagger using as little training data as possible. When a small Thai corpus is used for training, these taggers have tagging accuracies of 94.4% and 95.5% (accounting only for the ambiguous words in terms of the part of speech), respectively. In this study, in order to construct more accurate taggers, we developed new tagging methods using three machine learning methods: the decision list, maximum entropy, and support vector machine methods. We then performed tagging experiments using these methods. The supervised data used for POS tagging in the Thai language was the same corpus used in the previous papers (Ma et al., 1998; Ma et al., 1999; Ma et al., 2000).
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2. PROBLEMS WITH POS TAGGING
This study did not consider the segmentation of a sentence into words. We assumed that the words had been segmented before POS tagging began.
 In this case, a sentence is expressed as follows:


S = (w1 , w2 , . . ., wn ),




          
         (1)
where wi is the i-th word in the sentence. POS tagging is the application of a POS tag to each word. Therefore, the result of POS tagging is expressed as follows:

T = (t1 , t2 , . . ., tn ) 





         (2)

where ti is the tag for the POS of word wi. Our goal is to determine the correct POS tag for each word. The categories indicated by the POS tags are defined in advance. POS-tagging problems can thus be regarded as classification problems, hence, they are capable of being handled by machine learning methods.

3. MACHINE LEARNING METHODS
In this study, we used the following three machine learning methods:

· decision list method

· maximum entropy method

· support vector machine method

In this section, these machine learning methods are described.

3.1 Decision List Method
In this method, pairs consisting of a feature f j and a category a are stored in a list, called a decision list (Yarowsky, 1994). The order in the list is defined in a certain way, and all the pairs are arranged in this order. The decision list method searches for pairs from the top of a list and outputs as the desired answer the category of the first pair having the same feature as a given problem. In this study, we used the value of p(a| f j ) to arrange the pairs in order.

The decision list method is equivalent to the following method using probabilistic equations. The probability of each category is calculated by using one feature fj (
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k), and the category with the highest probability is judged to be the correct category. The probability of producing a category a in a context b is given by the following equation:

p(a|b) = p(a|fmax ),





         (3)

where fmax is defined as

fmax =  
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         (4)

such that 
[image: image6.wmf]p

~

(ai|fj) is the occurrence rate of category ai when the context includes feature fj .
3.2 Maximum Entropy Method
In this method, the distribution of probabilities p(a,b) when Equation (5) is satisfied and Equation (6) is maximized is calculated. The category with the maximum probability as calculated from this distribution of probabilities is judged to be the correct category (Ristad, 1997):
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where A, B, and F are a set of categories, a set of contexts, and a set of features fj   (
[image: image15.wmf]Î

F,1
[image: image16.wmf]£

j
[image: image17.wmf]£

k), respectively; gj(a,b) is a function with a value of 1 when context b includes feature fj and the category is a, and a value of 0 otherwise; and 
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(a,b) is the occurrence rate of pair (a,b) in the training data.

In general, the distribution of 
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(a,b) is very sparse. We cannot use it directly, so we must estimate the true distribution of p(a,b) from the distribution of 
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(a,b). In the maximum entropy method, we assume that the estimated value of the frequency of each pair of category and feature calculated from 
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(a,b) is the same as that calculated from p(a,b) (This corresponds to Equation (5).). These estimated values are not so sparse. We can thus use the above assumption to calculate p(a,b). Furthermore, we maximize the
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Figure 1.  Maximizing the Margin

entropy of the distribution of 
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(a,b), because using only Equation (5) produces many solutions for 
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(a,b). Maximizing the entropy makes the distribution more uniform, which is known to provide a strong solution to data sparseness problems.

3.3 Support Vector Machine Method
In this method, data consisting of two categories is classified by dividing space with a hyperplane. When the margin between examples that belong to one category and examples that belong to the other category in the training data is larger (see Figure 1
), the probability of incorrectly choosing categories in open data is thought to be smaller. The hyperplane maximizing the margin is determined, and classification is done by using this hyperplane. Although the basics of the method are as described above, for extended versions of the method, in general, the inner region of the margin in the training data can include a small number of examples, and the linearity of the hyperplane is changed to non-linearity by using kernel functions. Classification in the extented methods is equivalent to classification using the following discernment function, and the two categories can be classified on the basis of whether the output value of the function is positive or negative (Cristianini and Shawe-Taylor, 2000; Kudoh, 2000):
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where x is the context (a set of features) of an input example; xi and yi (i = 1, ..., l, yi 
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 {1, -1}) indicate the context of the training data and its category, respectively; and the function sgn is defined as

sgn(x) = 1 (x 
[image: image29.wmf]³

0),



          

         (8)


[image: image30.wmf]1

-

  (otherwise).

Each 
[image: image31.wmf]i

a

 (i = 1, 2...) is fixed when the value of 
[image: image32.wmf])

(

a

L

 in Equation (9) is maximum under the conditions of Equations  (10) and  (11).



[image: image33.wmf])

(

a

L

 = 
[image: image34.wmf]å

å

=

=

-

l

j

i

j

i

j

i

j

i

l

i

i

x

x

K

y

y

1

,

1

)

,

(

2

1

a

a

a





        (9)



[image: image35.wmf]C

i

£

£

a

0

  (i = 1, ..., l)





       (10)


[image: image36.wmf]å

=

l

i

i

i

y

1

a

 = 0 






       (11)

Although the function K is called a kernel function and various types of kernel functions can be used, this paper uses a polynomial function as follows: 


K (x, y) = (x
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y + 1)d ,





       (12)
where C and d are constants set by experimentation. In this paper, C and d are fixed as 1 and 2 for all experiments, respectively.
 A set of xi that satisfies 
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 is called a support vector, and the portion used to perform the sum in Equation (7) is calculated by only using examples that are support vectors.

Support vector machine methods can handle data consisting of two categories. In general, data consisting of more than two categories can be handled by using the pair-wise method. In this method, for data consisting of N categories, all pairs of two different categories (N(N-1)/2 pairs) are constructed. Better categories are determined by using a 2-category classifier (in this paper, a support vector machine
 is used as the 2-category classifier.), and finally the correct category is determined on the basis of "voting" on the N(N-1)/2 pairs analyzed with the 2-category classifier.

The support vector machine method used in this paper is in fact implemented by combining the support vector machine method and the pair-wise method described above.

4. Features (information used in classification)
In this section, we explain features (information used in classification), which are required to use machine learning methods.

As mentioned in Section 2, when the result of word segmentation of a sentence in the Thai language is input, we output the POS for each word. Therefore, the features are extracted from the inputted Thai sentence. Here, we define the following items as features.

· POS information

The candidate POS tags of the current word, the three previous words, and the three subsequent words
 (e.g., "POS-INFO:WORD-3:noun"
, "POS-INFO:WORD-3:verb", "POS-INFO:WORD-2:noun", "POS-INFO:WORD-1:noun", "POS-INFO:WORD0:noun", "POS-INFO:WORD+1:noun", "POS-INFO:WORD+2:noun", "POS-INFO:WORD+3:noun", etc. The total number of features in the Thai corpus is 316.)

The candidate POSs were determined in advance for each word by using a word dictionary or the Thai corpus.

· POS and order information

The pairs of a candidate POS tag and its frequency order in the current word, three previous words, and three subsequent words
 (e.g., "POS-ORDER-INFO:WORD-3:noun:ORDER1"
, "POS-ORDER-INFO:WORD0:noun:ORDER1", "POS-ORDER-INFO:WORD0:verb:ORDER2", etc. The total number of such features is 782.)

The frequency order indicates the frequency order of the POS in the training data when it is used for the current word.

· word information

The current word, three previous words, and three subsequent words (e.g., "WORD-INFO:WORD-3:tomorrow"
, "WORD-INFO:WORD-2:tomorrow", etc. The total number of such features is 15,763.)

Here, we described the reasons that we used these features for our study. We used POS information as well as many other POS taggers. We used POS and order information, because the POS having the highest frequency for a word is often its correct POS and that POS wants to be recognized in our system. We used word information in addition because word information is effective as found in the following experiments.

5. Experiment and Discussion
We describe in this section our POS tagging experiments in the Thai language performed by using the machine learning methods described in Section 3 with the feature sets described in Section 4, for the tasks described in Section 2 and discuss the experimental results.

5.1 Experiment
The experiments in this paper were performed using the same Thai corpus as in previous papers (Ma et al., 1998; Ma et al., 1999; Ma et al., 2000). This corpus contains 10,452 sentences randomly divided into two sets: one with 8,322 sentences, for training; and the other with 2,130 sentences, for testing. The training and testing sets contain, respectively,

22,311 and 6,717 ambiguous words (in other words, the target words for POS tagging).
 The ambiguous words are those that may serve as more than one POS. The other words 

Table I.  Experimental Results

	Method
	Precision

	Baseline method
	83.5%

	HMM (2-gram)
	89.4%

	HMM (3-gram)
	89.1%

	Rule-based
	93.5%

	Elastic NN
	94.4%

	Hybrid tagger
	95.5%

	Decision list
	83.6%

	Maximum entropy
	95.3%

	Support vector machine
	96.1%


(Precisions are as obtained for ambiguous words only.)

always serve as the same POS, and they were assigned to a POS by using a word dictionary rather than a machine learning method. 47 POSs are defined for the Thai corpus (Charoenporn et al., 1997). In the experiments using maximum entropy methods, we did not use the features occurring only once in the training data for the data sparseness problems.

The experimental results are shown in Table I. In the baseline method, a word is judged to represent the POS that most frequently appears for that word in the training corpus. HMM refers to a method that performs POS tagging at the sentence level by using the hidden Markov model based on the n-gram model(Charniak, 1993). We used TnT
 for HMM. The precisions for "Rule-based", "Elastic NN", and "Hybrid tagger" are from previous papers (Ma et al., 1999; Ma et al., 2000). "Rule-based" indicates Brill's method, that is, the use of error-driven transformation rules (Brill, 1995). "Elastic NN" is a method proposed previously (Ma et al., 1999), which uses a three-layered perceptron in which the length of the input layer is changeable. "Hybrid tagger" is another method proposed previously (Ma et al., 2000), which combines the elastic NN and rule-based methods. It improves elastic NN by using Brill's error-driven learning. The precision of the hybrid tagger was the best among the previous studies based on the Thai corpus used in this paper. The results in Table I for the other three methods (decision list, maximum entropy, and support vector machine) were obtained in this study by using the methods described in Section 3.

Among all the methods, the precision of the support vector machine method (96.1%
) was best. Since the precision of this method was higher than that of the hybrid tagger (95.5%), which had produced the best precisions in the previous studies, our study has improved the technology of POS tagging in the Thai language. We performed a statistical test against all the pairs of the methods by using a sign test. The results were that we could not obtain significant differences in just three of the pairs, a pair of the baseline and decision list methods, a pair of HMM (n=2) and HMM (n=3), and a pair of the maximum entropy method and hybrid tagger, and we could obtain significant differences in any of the other pairs at the significance level of 0.01 (i.e., p < 0.01).
 Therefore, our improvement of POS tagging in the Thai language was also confirmed by the statistical tests.

5.2 Comparison of our three methods
Next, we compared the various methods. We first examined the three methods used in this paper. Since they used exactly the same features, the comparison was strict. The order of these methods was as follows:

Support vector  >  Maximum entropy  >  Decision list

(The order was confirmed by using the sign test described in Section 5.1.) The precision of the decision list method was very low and the same as that of the baseline method. This was because we did not use AND features (combination of features) as inputs for the system. We can thus say that by using only one feature the experiments were under adverse conditions for the decision list method. If we use AND features, the precision of the decision list method will increase,
 but when we make AND features randomly, the number of features increases explosively. When we add a small number of features, we need to thoroughly examine which combinations of features must be added. In contrast, the support vector and maximum entropy methods perform estimation by using all of the features. Furthermore, the support vector machine method has a framework for considering AND features automatically by adjusting the constant d in the kernel function.
 We can thus say that the support vector machine method is an effective machine learning method in that we do not have to examine AND features by hand.

5.3 Comparison to the methods used in previous works
Next, we compared our methods with the previous methods. We had to do this carefully, because the features used here did not match those used in the previous studies. We first compared the rule-based and hybrid tagger methods. These methods use not only POS information but also word information in the rule templates used in error-driven learning. We can thus say that these methods use almost the same features as those in this study, and therefore, they can be compared to the methods used here. We can say that the order of the main machine-learning methods was as follows:

Support vector  >  Hybrid tagger,  >  Rule-based

            

Maximum entropy

 (As the results of the statistical test described in Section 5.1, the order was confirmed by a sign test and there was no significant difference found between the hybrid tagger and maximum entropy methods in the test.)

Next, we examined the HMM and elastic NN methods. These methods do not use word information directly: they only use the probability of the occurrence of a POS in each word. (To use word information in the HMM and elastic NN methods is not easy.) We carried out our experiments by eliminating the features of word information to create similar conditions for these methods, as shown in Table II. The support vector machine and maximum entropy method produced lower precision in this case than when using word information. In the support vector machine and maximum entropy method, we confirmed that word information was effective. The decision list method produced higher precision when word information was eliminated. This would be because the learning ability of the decision list method is low and over training problem occurred when word information was used. When word information was not used, the order of the learning methods was as follows:

Support vector  > Elastic NN  >  Maximum entropy

 

 >  HMM (2-gram)  >  Decision list

Table II. Experimental Results When Word Information was Eliminated

	Method
	Precision

	Decision list
	86.5%

	Maximum entropy
	93.3%

	Support vector machine
	95.1%


(Precisions are as obtained for ambiguous words only.)

The order was confirmed by using a sign test. We could obtain significant differences in any of pairs among the above five methods at the significance level of 0.01 (i.e., p < 0.01). These results confirmed the effectivity of the support vector machine method. However, the difference of accuracy rates between the support vector machine method and the elastic NN was not so large (0.7%). The main reason that the support vector machine method performed better than the elastic NN method is the use of word information. (The difference of accuracy rates between them was 1.7% when word information was used in the support vector machine method.) When we compare the elastic NN (94.4%) and the maximum entropy method (93.3%) with no word information, the former had higher precision. Elastic NN, however, uses the probability of the occurrence of a POS in each word, while the support vector machine uses word and order information instead. Since this provides less information than the probability of the occurrence of a POS, this is not a strict comparison. Therefore, we could not judge which method is better between the elastic NN and the maximum entropy method with no word information. As for HMM, we can say that it has lower performance than the support vector machine and maximum entropy methods, because its precision was much lower than that for both of these methods.

5.4 Discussion on the reasons for our improvement
We examined how we were able to improve the precision. The reason the support vector machine method produced higher precision than the HMM and Elastic NN methods is that it uses word information as well. ("HMM" and "Elastic NN" do not use word information, as mentioned above, because these methods are not easy to use with word information.) In some cases, a POS is determined by a word in the previous or subsequent context, and in many of these cases the word information is very helpful. Next, we compared the support vector machine method to the rule-based and hybrid tagger methods. Since almost the same information was used among them, we can expect that the support vector machine method should have better performance than the other　methods. Since the hybrid tagger includes Brill's error-driven learning, that is, the rule-based method, the performance of the hybrid tagger will deteriorate when the performance of the rule-based method is bad. We can thus say that we obtained better precision because we used word information and a support vector machine having good performance.

5.5 Comparison of computing time
In this section, we compared our three machine learning methods (the decision list method, the maximum entropy method, and the support vector machine method) and the hidden Markov model in terms of computing time. We used the ChoiceMaker Maximum Entropy Estimator
 for the learning in the maximum entropy method. We used the TinySVM for a 2-category classifier in the support vector machine. We used TnT for both the learning and tagging in the hidden Markov model. We used 2-gram for TnT because the case using 2-gram obtained higher precisions than the case using 3-gram. We implemented other parts (the classification using the maximum entropy method, the pair-wise method in the support vector machine, and all the parts of the decision list method) by using Perl. We used a Sun Microsystems Enterprise 420R (UltraSPARC-II 450 MHz, 5.6) for these experiments. In our three machine learning methods, we made these experiments for two cases: when we used word information and when we did not. We used the same training corpus as used in Section 5.1 for learning and used the same test corpus as used in Section 5.1 for tagging. The results are shown in Tables III, IV and V.

The order of the learning time is as follows:

Hidden Markov  <  Decision list  <  Maximum entropy   <  Support vector

The order is the same as the order of accuracy rates of tagging shown in Section 5.2 with the exception of the Hidden Markov model. The computing time of the hidden Markov model is very small. This is because for the hidden Markov model we used the very sophisticated tool, TnT, which was developed by using C programming only.

The tagging time in the decision list method and the support vector machine method is large. The reason is that the decision list method needs a considerable amount of time to search for rules for tagging and the support vector machine method needs a considerable amount of time as well to determine final decisions on the basis of the pair-wise method. However, if we use C programming for these methods instead of Perl, we will be able to speed up the process to some extent.

Table III. Computing Time for the Hidden Markov Model Method

	Method
	Learning
	Tagging

	Hidden Markov model (2-gram)
	1.55 sec.
	0.88 sec.


Table IV. Computing  Time  for  Three  Machine  Learning  Methods  When  Word  Information was Used

	Method
	Learning
	Tagging

	Decision list
	49 sec.
	18 min.  49 sec.

	Maximum entropy
	19 min.  41 sec.
	47 sec.

	Support vector machine
	45 min.  19 sec.
	1 hour 25 min.  32 sec.


Table V. Computing  Time  for  Three  Machine  Learning  Methods  When  Word  Information was Eliminated

	Method
	Learning
	Tagging

	Decision list
	35 sec.
	18 min.  30 sec.

	Maximum entropy
	14 min.  44 sec.
	38 sec.

	Support vector machine
	37 min.  2 sec.
	1 hour 24 min.  8 sec.


The tagging time of the maximum entropy method is very small. This is a merit of the maximum entropy method. However, we think that there are certainly many cases when we will need a more accurate tagger even if the tagging takes longer. In these cases, the support vector machine method outperforming the maximum entropy method becomes effective.

Next, we would like to compare computing time between the case when we used word information and the case when we did not use word information. The computing time in using word information was slightly larger than that in using no word information. The difference in computing time was not so large. Thus, we found that adding word information did not affect the computing time so badly and that we can use word information for Thai part-of-speech tagging.

5.6 Experimental results when changing the size of the training data
We made experiments using our three machine learning methods, the baseline method, and the hidden Markov model (2-gram) when changing the size of the training data. In this section, we showed the results. We used the following four kinds of training data sizes for these experiments.

· the full data (the entire data used in the experiments descreibed in the previous sections)

· 1/2 size of the full data

· 1/4 size of the full data

· 1/8 size of the full data

We show the learning times, the tagging times, and the accuracy rates in Figures 2 to 7. In these figures, the horizontal axes indicate the ratios of the sizes of the training data. The vertical axes in Figures 2 to 5 indicate the computing time; the unit is the second. The vertical axes in Figures 6 and 7 indicate the accuracy rate. "BL", "HMM", "DL", "ME", and "SVM" in the figures indicate the baseline method, the hidden Markov model (2-gram), the decision list method, the maximum entropy method, and the support vector machine method. Since we cannot have the difference between the use of word information and no use of word information in "BL" and "HMM", the results of "BL" are the same in Figures 6 and 7 and the results of "HMM" are the same in Figures 2 to 7.

In Figures 2 and 3, the curved lines go up strongly when the size of the training data is increased. In Figures 4 and 5, the curved lines do not go up so strongly. From these results, we found that the learning time need more time than the tagging time when the size of the training data was increased.

Next, we looked at the accuracy rates when the size of the training data was changed. From Figures 6 and 7, we found that the difference of the accuracy rates between the maximum entropy method and the support vector machine method was larger when the size of the training data was decreased. This indicates that when the size of the training data is smaller, a good-performance machine learning system such as the support vector machine method has a larger good effect. 
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Figure 2.  Learning time when word information was used

Figure 3.  Learning time when word information was eliminated [image: image40.wmf]0
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Figure 4.  Tagging time when word information was used [image: image41.wmf]0
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Figure 5:  Tagging time when word information was eliminated [image: image42.wmf]0
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Figure 6:  Accuracy rates when word information was used [image: image43.wmf]0.65
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Figure 7:  Accuracy rates when word information was eliminated [image: image44.wmf]0.65
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6. Conclusions
In this paper, we reported the results of our study of POS tagging in the Thai language using supervised machine-learning methods. We used, as supervised data, the corpus described in the previous paper (Ma et al., 2000). We used the decision list method, the maximum entropy method, and the support vector machine method as machine learning methods. In the experimental results, the support vector machine method produced the best precision. Its precision was higher than the best precision in the previous studies, which was obtained by using a hybrid tagger combined with a neural network and Brill's error-driven learning.

We examined and compared various machine learning methods, including those in previous studies. We also examined why our method could improve the accuracy. We can say that our method described in this paper produced higher precision because we used word information and the support vector machine method, whose performance has been demonstrated to be good.
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� The Thai language is an agglutinative language like Japanese, and it thus has the problem of word segmentation in addition to POS tagging in morphological analysis. This study did not consider word segmentation. To handle word segmentation, we have to make all possible segmentations by using a word dictionary and then perform a Viterbi search so that the probability for POS tagging and word segmentation in a whole sentence is as high as possible. This study focused on POS tagging, which would be one component of the Viterbi search. Because our approach uses machine learning methods, the probabilities were output with estimated results. Thus, we can easily use this study as one component in the Viterbi search.


� Although there are also such decision tree learning methods as C4.5, we did not use them for the following two reasons. First, decision tree learning methods perform worse than the other methods in several tasks (Murata et al., 2000; Taira and Haruno, 2000). Second, the number of attributes used in this research was very large, and the performance of C4.5 would have become increasingly worse if the number of attributes had been decreased so that C4.5 could work.


� In the figure, the white circles indicate examples that belong to one category, and the black circles indicate examples that belong to the other category. The solid line indicates the hyperplane dividing space, and the broken lines indicate planes at the boundaries of the margin regions.


� We confirmed that d = 2 produced good performance in preliminary experiments.


� We used the software TinySVM (Kudoh, 2000) developed by Kudoh as the support vector machine.


� In general, since the words preceding the current word have already been analyzed, we can use the one POS used in the current context, not the possible POSs. In fact, previous studies used the POSs of the results of tagging in the previous context. This paper, however, uses possible POSs in the previous context for the following two reasons. One is the easiness of processing, and the other is that we considered cases when the tagging in the previous context was performed incorrectly.


� "POS-INFO" is an indicator for "POS information". The digit "-3" (or "+3") at "WORD-3" (or "WORD+3") indicates the location of the word used in the feature and means the third left (or right) word of the current word. The digit "0" means the current word. "noun" means the POS of that word.


� In this study, the problem of unknown words did not occur since the POS information for all the words was given in advance. This is the same condition as that of the previous study. However, unknown words are a significant problem for POS tagging. If we handle unknown words in our methods, we must use all the POSs for candidate POS tags and we should use some additional features, such as the suffix strings of words, which have been used in some studies handling unknown words (Nakagawa et al., 2001).


� In Ma et al.'s studies, the probability of a POS for each word was used. The machine learning methods, as used in this paper, however, are difficult to use with continual values, such as probabilities, in the features. Therefore, we used the occurrence order instead of the occurrence probability. Since the order information is at most the number of ambiguities in POS and thus not so large, the machine learning methods used in this paper can handle the order.


� "POS-ORDER-INFO" is an indicator for "POS and order information". "ORDER1" means that the POS has the highest order in frequency. "ORDER2" means that the POS has the second order in frequency.


� "WORD-INFO" is an indicator for "word information".


� The total numbers of words including non-ambiguous words are 124,331 and 34,544, respectively.


� TnT is a statistical Part-of-Speech Tagger developed by Brants. It is available on the WWW at http://www.coli.uni-sb.de/ thorsten/tnt.


� The precisions shown in this paper were obtained using ambiguous words only. 


� We were given the tagging results in the previous works from their authors, which were then used in the statistical tests.


� A previous paper (Murata et al., 2000) showed that the decision list method can produce high precisions for bunsetsu identification in Japanese sentences by using AND features. In this study, the precision of the decision list method was low because we did not use AND features.


� In the support vector machine method, d = 2 in Equation (12) indicates using the combination of two features.


� This system was developed by Andrew Borthwick.
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